Coronavirus Studies in Nonhuman Primate Models
This page provides a curated list of coronavirus studies and reviews using nonhuman primate (NHP) models.
NHP Species: lemurs, lorises
Year Published: 2021
Study Type/Review:
NPRC/Institute: University of Calgary; Institut de Biologia Evolutiva, Universitat Pompeu Fabra; North Carolina Central University, Duke University and others
Keywords: SARS-CoV-2, ACE2 gene and protein sequences, several species, primates
Summary of Study: Study suggests that lemurs of the families Indriidae, Daubentonlidae, and Lemuridae are likely to be particularly vulnerable to SARS-CoV-2 infection.
References: PMID: 33792947 / doi: 10.1002/ajp.23255
Contact Info: James Higham: [email protected]
URL: https://onlinelibrary.wiley.com/doi/10.1002/ajp.23255
NHP Species:
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: The Catholic University of Korea, Korea Research Institute of Bioscience and Biotechnology, SK Science, Jeonbuk National University, and others
Keywords: SARS-CoV-2, receptor-binding domain of SARS-CoV-2, immune response, mice and primates
Summary of Study: RBD-P2 + alum immunization elicits a robust neutralizing antibody response and provides complete or near-complete elimination of live SARS-CoV-2 virus particles. Additionally, findings provide insight into the potential use of the N protein in the development of SARS-CoV-2 vaccines.
References: PMID: 34049881 / doi: 10.1126/sciadv.abg7156
Contact Info: Jae-Hwan Nam: [email protected]; Sang-Myeong Lee: [email protected]; Jung Joo Hong: [email protected]
URL: https://www.science.org/doi/10.1126/sciadv.abg7156?url_ver=Z39.88-2003&rfr_id=o…
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Chinese Center for Disease Control and Prevention; Chinese Academy of Medical Sciences & Peking Union Medical College; Chinese Academy of Sciences
Keywords: SARS-CoV-2, mRNA vaccine, nanoparticles, immune response, pathology, mice and primates
Summary of Study: Using both mouse and rhesus macaque SARS-CoV-2 challenge models, this study demonstrates strong immunogenicity, protective ability and high safety profiles of SW0123 (an LPP-based mRA vaccine), and supports this promising candidate for future clinical evaluation.
References: PMID: 34059617 / doi: 10.1038/s41392-021-00634-z
Contact Info: Wenjie Tan: [email protected]; Xiaozhong Peng: [email protected]
URL: https://www.nature.com/articles/s41392-021-00634-z
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: prevention
NPRC/Institute: California National Primate Research Center; University of California, Davis; Louisiana State University Health Sciences Center; The Rockefeller University.
Keywords: SARS-CoV-2, neuroinflammation, effector CD4 T cells, inflammation, cerebrospinal fluid, pneumonia, primates
Summary of Study: Neutralizing mABs administered preventatively to high-risk populations may mitigate the adverse inflammatory consequences of SARS-CoV-2 exposure.
References: PMID: 34706272 / doi: 10.1016/j.celrep.2021.109942
Contact Info: Smita Iyer: [email protected]
URL: https://www.sciencedirect.com/science/article/pii/S2211124721014157?via%3Dihub=
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Harvard Medical School, University of North Carolina at Chapel Hill, Ragon Institute of MGH, MIT, and Harvard, Massachusetts Consortium on Pathogen Readiness
Keywords: SARS-CoV-2, adenovirus vaccine, immunogenicity and protective efficacy, mice
Summary of Study: RhAd52 vaccines elicit robust SARS-CoV-2 specific antibody responses and protect against clinical disease and viral replication in the lungs. These data validate the MA10 mouse model as a useful tool to screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for COVID-19.
References: PMID: 34523968 / doi: 10.1128/JVI.00974-21
Contact Info: Dan Barouch: [email protected]
URL: https://journals.asm.org/doi/10.1128/JVI.00974-21?url_ver=Z39.88-2003&rfr_id=or…
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Chinese Academy of Sciences, Kunming Institute of Zoology; Institute of Infectious Diseases, Shenzhen Bay Laboratory; School of Medicine, Tsinghua University
Keywords: SARS-CoV-2, receptor-binding domain subunit vaccine, humoral and cellular immune responses, pathology, primates
Summary of Study: A trimeric SARS-CoV-2 receptor-binding domain (RBD) subunit vaccine that stimulates the natural structure of the spike (S) trimer glycoprotein is highly immunogenic and safe, providing long-lasting, broad, and significant immunity protection in NHPs. The vaccine-induced antibodies can effectively neutralize the SARS-CoV-2 501Y.V2 variant. A booster vaccination can quickly activate the memory immune response to avoid re-infection.
References: PMID: 34179862 / doi: 10.1016/j.xinn.2021.100140
Contact Info: Limin Yang: [email protected]; Yong-tang Zheng: [email protected]
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214323/
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Harvard Medical School; Janssen Vaccines & Prevention; Tufts University Cummings School of Veterinary Medicine; Bioqual; Ragon Institute of MGH, MIT, and Harvard.
Keywords: SARS-CoV-2, adenovirus vectored COVID-19 vaccine, virus transduction, primates
Summary of Study: A single immunization with relatively low dose of Ad26.COV2.S effectively protected against SARS-CV-2 challenge in rhesus macaques, although a higher vaccine dose may be required for protection in the upper respiratory tract.
References: PMID: 34133941 / doi: 10.1016/j.cell.2021.05.040
Contact Info: Dan Barouch: [email protected]
URL: https://www.cell.com/cell/fulltext/S0092-8674(21)00693-0?_returnURL=https%3A//l…
NHP Species:
Year Published: 2021
Study Type/Review:
NPRC/Institute: Brigham and Women's Hospital and Harvard Medical School, The Affiliated Hospital of Youjiang Medical Univ. for Nationalities (China), and the University of Alabama
Keywords: SARS-CoV-2, ACE2 protein expression, lung injury, mice and primates
Summary of Study: Data from this study unequivocally support the key role of ACE2 in the sinonasal mucosa as a functional reARS-CoV-2; however, the restricted baseline expression pattern of ACE1 in the lung presents a conundrum as it raises questions about alternative viral receptors or additional mechanisms of lung injury in COVID-19 pneumonia.
References: PMID: 33626084 / doi: 10.1371/journal.pone.0247510
Contact Info: Sule Cataltepe: [email protected]
URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247510
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Celltech Pharmed Co.; Iran University of Medical Sciences; University of Iran; Tarbiat Modares University; Royan Institute for Stem Cell Biology and Technology; and others
Keywords: SARS-CoV-2, mRNA-vaccine, lipid nanoparticle, spike protein, immune response, primates
Summary of Study: A novel mRNA-LNP vaccine against SARS-CoV-2 was developed and preclinically evaluated, revealing that it was efficient enough to induce high level production of neutralizing antibodies against SARS-CoV-2 in mice and rhesus macaque monkeys.
References: PMID: 34579244 / doi: 10.3390/vaccines9091007
Contact Info: Alireza Sohi: [email protected]; Jafar Kiani: [email protected]; Ehsan Arefian: [email protected]; Arezou Khosrojerdi: [email protected]; Mohammad Zim: [email protected]
URL: https://www.mdpi.com/2076-393X/9/9/1007
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: NIAID, Ragon Institute of MGH, MIT< and Harvard, University of Duisburg-Essen, Harvard University, Emory Vaccine Center, Yerkes National Primate Research Center, and others
Keywords: SARS-CoV-2, protein subunit vaccine, soluble prefusion-stabilized spike trimers, immune response, primates
Summary of Study: Soluble prefusion-stablized spike protein trimers (preS DTM) from SARS-CoV-2 were formulated with the adjuvant AS03 and administered twice to NHPs. Two days after challenge, vaccinated NHPs showed rapid control of viral replication in both the upper and lower airways. These data indicate that antibodies induced by the AS03-adjuvanted preS dTM vaccine were sufficient to mediate protection against SARS-CoV-2 in NHPs and that rapid anamnestic antibody responses in the lung may be a key mechanism for protection.
References: PMID: 34315825 / doi: 10.1126/scitranslmed.abi4547
Contact Info: Robert Seder: [email protected]
URL: https://www.science.org/doi/10.1126/scitranslmed.abi4547?url_ver=Z39.88-2003&rf…
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Duke University; UNC Chapel Hill; 3M Corporate Research Materials Laboratory; Infectious Disease Research Institute; California National Primate Research Center; and others
Keywords: SARS-CoV-2, mRNA vaccine, infants, immune response, primates
Summary of Study: Infant rhesus macaques were vaccinated with an mRNA-based SARS-CoV-2 vaccine, similar to the Moderna vaccine, or an S protein plus TLR7/8 agonist-based vaccine. Both vaccines induced profound induction of neutralizing antibody titers, memory B cells responses, and SARS-CV-2 specific CD4+ T cell responses that were long-lasting, all while limiting vaccine related toxicity.
References: PMID: 34131024 / doi: 10.1126/sciimmunol.abj3684
Contact Info: Kristina De Paris: [email protected]
URL: https://www.science.org/doi/10.1126/sciimmunol.abj3684?url_ver=Z39.88-2003&rfr_…
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Janssen Vaccines & Prevention B.V.; Harvard Medical School; Lucidity Biomedical Consulting; Ragon Institute of MGH, MIT and Harvard; Massachusetts Consortium on Pathogen Readiness
Keywords: SARS-CoV-2, adenovirus vector, immunogenicity, protective efficacy, immune response, primates
Summary of Study: Ad26.COV2.S vaccine confers durable protection against replication of SARS-CoV-2 in the lungs that is predicted by the levels of Spike-binding and neutralizing antibodies, indicating that Ad26.COV2.S could confer durable protection in humans and immunological correlates of protection may enable the prediction of durability of protection.
References: PMID: 34620860 / doi: 10.1038/s41467-021-26117-x
Contact Info: Roland Zahn: [email protected]
URL: https://www.nature.com/articles/s41467-021-26117-x
NHP Species:
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Universite Paris-Saclay/Inserm/CEA; Vaccine Research INstitute, Creteil, France; Inserm; Baylor Scott and White Research Institute; Institut Pasteur; Karolinska Institutet; and others
Keywords: SARS-CoV-2, subunit vaccine, receptor-binding domain, immune response, humanized mice, primates
Summary of Study: A single dose of the alphaCD40.RBD (a vaccine that targets the receptor-binding domain of the SARS-CoV-2 spike antigen to the CD40 receptor) administered without adjuvant boosts the protective response in COVID-10 convalescent NHPs.
References: PMID: 34471122 / doi: 10.1038/s41467-021-25382-0
Contact Info: Yves Levy: [email protected]
URL: https://www.nature.com/articles/s41467-021-25382-0
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Walter Reed Army Institute of Research; Henry M. Jackson Foundation for the Advancement of Military Medicine; Washington University; National Cancer Institute/NIH; BIOQUAL; and others
Keywords: SARS-CoV-2, nanoparticle protein vaccine, humoral and cellular immune responses, primates
Summary of Study: Findings support the continued development of SARS-CoV-2 RBD ferritin nanoparticle vaccines (RFN) for managing COVID-19 and related SARS-CoV-like virus outbreaks.
References: PMID: 34470866 / doi: 10.1073/pnas.2106433118
Contact Info: Kayvon Modjarrad: [email protected]; Diane Bolton: [email protected]
URL: https://www.pnas.org/content/118/38/e2106433118.long
NHP Species: multiple species
Year Published: 2021
Study Type/Review:
NPRC/Institute: EcoHealth Alliance; Deakin University; Institute of Epidemiology, Disease Control and Research (Dhaka, Bangladesh); University of Dhaka; Chattogram Veterinary and Animal Sciences University
Keywords: SARS-CoV-2, meta analysis, virus transmission, public health, susceptible animal species, primates
Summary of Study: The continuing spillover and spillback of SARS-CoV-2 in a wide range of animals in farming, captive and free-ranging interfaces make inferences for human and animal health, welfare and conservation. Pets, farmed and captive wild animals should be vaccinated in accordance with vaccination in humans.
References: PMID: 34694705 / doi: 10.111/tbed.14356
Contact Info: Ariful Islam: [email protected]
URL: https://onlinelibrary.wiley.com/doi/10.1111/tbed.14356
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: California National Primate Research Center, UC Davis School of Medicine, The Rockefeller University, UC Davis School of Veterinary Medicine, DMID/NIAID/NIH, Howard Hughes Medical Institute
Keywords: SARS-CoV-2, therapeutic interventions, neutralizing monoclonal antibodies, pathology, primates
Summary of Study: Study provides proof-of-concept in support of further clinical development of monoclonal antibodies C135-LS and C144-LS against COVID-19 during early infection.
References: PMID: 34228761 / doi: 10.1371/journal.ppat.1009688
Contact Info: Koen Van Rompay: [email protected]; Michel Nussenzweig: [email protected]; J. Rachel Reader: [email protected]
URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009688
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: University of Tehran, Tabriz University of Medical Sciences, Karolinska Institute, University of Rochester Medical Center, Tokyo University of Science, University of Veterinary Medicine (Vienna)
Keywords: SARS-CoV-2, immune response, reinfection, recovery, primates
Summary of Study: Review paper proposing a new strategy to predict the potential of reinfection in each identified category. This classification may help to distribute resources more meticulously to determine: Who needs to be serologically tested for SARS-CoV-2 neutralizing antibodies, what percentage of the population is immune to the virus, and who needs to be vaccinated.
References: PMID: 33520309 / doi: 10.1016/jare.2020.12.013
Contact Info: Younes Aftabi: [email protected]; Sasan Fereidouni: [email protected]
URL: https://www.sciencedirect.com/science/article/pii/S2090123220302630?via%3Dihub=
NHP Species:
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Chinese Academy of Sciences; Shenzhen Kangtai Biotechnology Co., Ltd.; Academy of Military Medical Sciences; Zhenzhou University; National Institutes for Food and Drug Control; Henan Normal University
Keywords: SARS-CoV-2, chimeric spike protein, humoral immune response, pathology, mice, primates
Summary of Study: The strategy of chimerica expression SARS-CoV-2 S RBD in SARS-CoV represents a new design for other vaccine platforms.
References: PMID: 34759261 / doi: 10.1038/s41392-021-00797-9
Contact Info: Shuguang Duo: [email protected]
URL: https://www.nature.com/articles/s41392-021-00797-9
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Harvard Medical School; Universite paris-Saclay/Inserm/Cea; Pereman School of Medicine; Novartis Gene Therapies; Boston University School of Medicine; Ragon Institute of MGH, MIT, and Harvard; and others
Keywords: SARS-CoV-2, AAV-vaccine candidates, immune response, mice, primates
Summary of Study: Studies of the AAV-based vaccine candidate AC1 support its potential to protect from COVID-19 disease and infection from a single-dose immunization; may lead to highly durable immunogenicity; and is stable at ambient temperature for storage for several weeks. The combination of these WHO-specific key attributes have not been met by any of the currently approved vaccines. Continued development of second-generation vaccine candidates such at AC1 is needed.
References: PMID: 34428428 / doi: 10.1016/j.chom.2021.08.002
Contact Info: Roger LeGrand: [email protected]; Luk Vandenberghe: [email protected]
URL: https://www.sciencedirect.com/science/article/pii/S1931312821003784?via%3Dihub=
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: National Health Commission of the People's Republic of China; Chinese Academy of Sciences; Nanjing Medical University; Beijing Institute of Microbiology and Epidemiology; Jiangsu Rec-biotechnology Col Ltd.
Keywords: SARS-CoV-2, neutralizing antibodies, immunization, spike protein, immunogenicity, rabbits, primates
Summary of Study: The immunogenic data derived from immunization with a combination of SARS-CoV-2 RBD and NTD demonstrate the feasibility of eliciting robust targeted immune profiles by using antibody-guided vaccine design.
References: PMID: 34676098 / doi: 10.1093/nsr/nwab053
Contact Info: Xiangxi Wang: [email protected]; Cheng-Feng Qin: [email protected]; Feng-Cai Zhu: [email protected]
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8083607/
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Harvard Medical School; Universite Paris-Saclay, Inserm; Pereman School of Medicine; Novartis Gene Therapies; Boston University School of Medicine; Institute Pasteur; Mass General Brigham Innovation; Albamunity
Keywords: SARS-CoV-2, AAV-based vaccine, immunogenicity, thermostability, mice, primates
Summary of Study: AAVrh32.33 technology demonstrated its utility as a preventative vaccine for COVID19, and its unique attributes may be applicable to other pathogens or immunization targets.
References: PMID: 34428428 / doi: 10.1016/j.chom.2021.08.002
Contact Info: Luk Vandenberghe: [email protected]; Roger Le Grand: [email protected]
URL: https://www.sciencedirect.com/science/article/pii/S1931312821003784?via%3Dihub=
NHP Species: macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Institute for Basic Science (IBS) (Republic of Kores), Eulji University School of Medicine, Seol National University Hospital, Jeonbuk National University Medical School, Sungkyunkwan University School of Medicine
Keywords: SARS-CoV-2, nasal ciliated cells, virus tropism, primates
Summary of Study: Nasal multiciliated epithelial cells are the main target for SARS-CoV-2 infection and replication in the upper airway during the early stages of COVID-19, implying that targeting nasal ciliated cells could be an ideal strategy to prevent SARS-CoV-2 propagation.
References: PMID: 34003804 / doi: 10.1172/JCI148517
Contact Info: Ji Hoon Ahn: [email protected]; JungMo Kim: [email protected]; Seon Pyo Hong: [email protected]; Young Tae Kim: [email protected], Chang-Seop Lee: [email protected]
URL: https://www.jci.org/articles/view/148517
NHP Species:
Year Published: 2021
Study Type/Review:
NPRC/Institute: National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Japan; Osaka University; Gunma University; The University of Tokyo; University of Wisconsin-Madison; Mie University Graduate School of Medicine
Keywords: SARS-CoV-2, pathogenicity, old animals, pathology, immune response, primates
Summary of Study: The COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.
References: PMID: 34625475 / doi: 10.1073/pnas.2104847118
Contact Info: Yasuhiro Yasutomi: [email protected]
URL: https://www.pnas.org/content/118/43/e2104847118.long
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Qassim University, Buraydah, Saudi Aribia; Imam Abdulrahman Bin Faisal University, MGM Dental College and Hospital, Baba Farid University of Health Sciences, Himachal Institute of Dental Sciences, Panineeya Mahavidyalaya
Keywords: SARS-CoV-2, immune response, animal models, meta analysis, mice, hamsters, ferrets, cats, dogs, primates
Summary of Study: This systematic review found that animal models only mimic limited signs and symptoms experienced in COVID infection as compared to infections in humans, yet are still essential to understand the pathogenesis, transmissibility or viral particles, and vaccine testing.
References: PMID: 34447038 / doi: 10.4103/jpbs.JPBS_749_20
Contact Info: Muhamood Moothedath: [email protected]
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8375911/
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Yerkes National Primate Research Center/Emory University; Emory School of Medicine; Ragon Institute of MGH, MIT and Harvard; The University of Texas Medical Branch; 3M Corporate Research Materials Laboratory; and others.
Keywords: SARS-CoV-2, receptor-binding domain subunit vaccine, neutralizing antibody, immune response, primates
Summary of Study: This study demonstrated the potential benefits of RBD trimer as an immunogen for COVID-19 vaccine using mice and macaque models. Future studies will investigate the durability of the vaccine-induced immune responses and what parameters lead to protection.
References: PMID: 34117252 / doi: 10.1038/s41467-021-23942-y
Contact Info: Rama Rao Amara: [email protected]
URL: https://www.nature.com/articles/s41467-021-23942-y
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Yerkes National Primate Research Center, Emory University School of Medicine, Louisiana State University Health Science Center, Texas Children's Center for Vaccine Development, La Jolla Institute for Immunology, and others.
Keywords: SARS-CoV-2, vaccines and adjuvants, immune response, primates
Summary of Study: The adjuvant 3M-052-alum (previously shown to induce better immune responses against HIV) may be a way to improve the efficacy of SARS-CoV-2 vaccines.
References: PMID: 34266981 / doi: 10.1126/sciimmunol.abh3634
Contact Info: Sudhir Pai Kasturi: [email protected]; Maria Elena Bottazzi: [email protected]
URL: https://www.science.org/doi/10.1126/sciimmunol.abh3634?url_ver=Z39.88-2003&rfr_…
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Chinese Academy of Medical Sciences, National Institute of Food and Drug Control (Beijing, China), Yunnan Provincial Infectious Disease Hospital, Yunnan Center for Disease Control and Prevention, Kunming Third People's Hospital
Keywords: SARS-CoV-2, inactivated virus vaccine, immune response, pathology, mice, primates
Summary of Study: Inactivated SARS-CoV-2 vaccine, produced by sequential inactivation with formaldehyde followed by propiolactone, was shown to be effective against SARS-Co-V 2 challenge in rhesus macaques.
References: PMID: 34462721 / doi: 10.1016/j.omtm.2021.08.005
Contact Info: Changgui Li: [email protected]; Qihan Li: [email protected]; Longding Liu: [email protected]
URL: https://www.sciencedirect.com/science/article/pii/S2329050121001315?via%3Dihub=
NHP Species: african green monkeys
Year Published: 2021
Study Type/Review:
NPRC/Institute: Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Brigham and Women's Hospital/Harvard Medical School, LSU Health Science Center, Julius-Maximilians-Universitat Wurzburg, and more
Keywords: SARS-CoV-2, endotheliopathy, inflammation, primates, mice
Summary of Study: In addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multiple organ failure.
References: PMID: 34307198 / doi: 10.3389/fcimb.2021.701278
Contact Info: Xuebin Qin: [email protected]; Suleyman Ergun: [email protected]
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292147/
NHP Species: african green monkeys
Year Published: 2021
Study Type/Review:
NPRC/Institute: Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Brigham and Women's Hospital/Harvard Medical School, LSU Health Science Center, Julius-Maximilians-Universitat Wurzburg, and more
Keywords: SARS-CoV-2, pulmonary vascular endotheliosis, perivascular inflammation, rodents and primates
Summary of Study: SARS-CoV-2 causes endotheliitis via both infection and infection-mediated immune activation, which may contribute to the pathogenesis of severe COVID-19 disease.
References: PMID: 34335981 / doi: 10.7150/thno.61810
Contact Info: Jay Kolls: [email protected]; Fengming Liu: [email protected]; Jay Rappaport: [email protected]
URL: https://www.thno.org/v11p8076.htm
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Pasteur Institute of Iran; Amirabad Virology Laboratory; Tarbiat Modares University; University of Tehran; Islamic Azad University; Hamadan University of Medical Sciences; Darou Pakhsh Pharmaceutical; Arena Diagnostic; and others.
Keywords: SARS-CoV-2, inactivated whole-virus vaccine, safety, immune response, guinea pig, rabbit, mice, primates
Summary of Study: Rhesus macaques were immunised with the two-dose schedule of 5 or 3 ug of the B1V1-CovIran vaccine and showed highly efficient protection against 10^4 TCID50 of SARS-CoV-2 intratracheal challenge compared with the control group.
References: PMID: 34699647 / doi: 10.1002/rmv.2305
Contact Info: Reza Aalizadeh: [email protected]; Hasan Jalili: [email protected]
URL: https://onlinelibrary.wiley.com/doi/10.1002/rmv.2305
NHP Species:
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Akston Biosciences Corp.; Biomere Biomedical Research Models; Feigin ABSL-3 Facility, Baylor College of Medicine; BIOQUAL; California National Primate Research Center; Sinclair Research Center; Pharmaceutical Research Associates Group B.V.
Keywords: SARS-CoV-2, viral spike protein, immunogenicity, prophylaxis, Fc-fusion, mice, primates
Summary of Study: Preclinical studies support the initiation of Phase I clinical studies with adjuvanted AKS-452 with the expectation that this room-temperature stable, Fc-fusion subunit vaccine can be rapidly and inexpensively manufactured to provide billions of doses per year especially in regions where the cold-chain is difficult to maintain.
References: PMID: 34642088 / doi: 10.1016/j.vaccine.2021.09.077
Contact Info: Todd Zion: [email protected]
URL: https://www.sciencedirect.com/science/article/pii/S0264410X21012949?via%3Dihub=
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Ragon Institute of MGH, MIT, and Harvard; Novavax; University of Duisburg-Essen; MIT; Texas Biomedical Research Institute; University of Maryland School of Medicine; Duke University Medical Center; La Jolla Institute for Immunology; and others
Keywords: SARS-CoV-2, humoral immune response, vaccine-induced antibody fingerprint, protection, primates
Summary of Study: Data presented suggest that a single dose may prevent disease via combined Fc/Fab functions but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants.
References: PMID: 34485950 / doi: 10.1016/j.xcrm.2021.100405
Contact Info: Gale Smith: [email protected]; Galit Alter: [email protected]
URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009701
NHP Species: african green monkeys, rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: United States Army Medical Research Institute of Infectious Diseases
Keywords: SARS-CoV-2, comparative evaluation of disease progression in three primate species
Summary of Study: In addition to African green monkeys, macaques can be successfully infected by airborne SARS-CoV-2, providing viable macaque natural transmission models for medical countermeasure evaluation.
References: PMID: 33529233 / doi: 10.1371/journal.pone.0246366
Contact Info: Sara Johnston: [email protected]; Aysegul Nalca: [email protected]
URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246366
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: NIAID/NIH; Emory University; Duke University Medical Center; Moderna; BIOQUAL
Keywords: SARS-CoV-2, mRNA-vaccine, immune response, hamsters, primates
Summary of Study: mRNA-1273 vaccine-induced antibody responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP.
References: PMID: 34529476 / doi: 10.1126/science.abj0299
Contact Info: Barney Graham: [email protected]; Robert Seder: [email protected]
URL: https://www.science.org/doi/10.1126/science.abj0299?url_ver=Z39.88-2003&rfr_id=…
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Institute of Medical Biology, Chinese Academy of Medical Sciences & U. Mass.
Keywords: SARS-CoV-2, DNA and protein vaccine combination, primates
Summary of Study: The novel combination of a DNA vaccine encoding the full-length Spike (S) protein of SARS-CoV-2 and a recombinant S1 protein vaccine elicited full protection against the challenge of SARS-CoV-2 in an NHP model.
References: PMID: 33555988 / doi: 10.1080/22221751.2021.1887767
Contact Info: Wei Cun: [email protected] / Shan Lu: [email protected]
URL: https://www.tandfonline.com/doi/full/10.1080/22221751.2021.1887767
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Janssen Vaccines, Leiden University Medical Center, Harvard Medical School
Keywords: SARS-CoV-2, adenovirus vectored COVID-19 vaccine, immune response, pathology, primates
Summary of Study: The immunogenicity, protective efficacy, and SARS-CoV-2 spike variant neutralizing data presented in this manuscript further support the decision to evaluate a single 5 x 10^10-vp dose of Ad26.COV2.S in Phase 3 trials.
References: PMID: 33909009 / doi: 10.1084/jem.20202756
Contact Info: Roland Zahn: [email protected]
URL: https://rupress.org/jem/article/218/7/e20202756/212032/Immunogenicity-and-effic…
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Biomedical Primate Research Centre (BPRC, Netherlands), Utrecht University
Keywords: SARS-CoV-2, computed tomography, bronchoalveolar lavage, test interference, primates
Summary of Study: Thorax CTs were evaluated for alterations in lung density in health and experimentally SARS-CoV-infected female rhesus macaques before and after bronchoalveolar lavage (BAL). An increase in the lung density was observed on the post-BAL CT but resolved within 24 hours in the healthy animals; a significant difference in both the lung density and CT score was still found 24 hours post BAL in the infected animals.
References: PMID: 34242213 / doi: 10.1371/journal.pone.0252941
Contact Info: Marieke Stammes: [email protected]
URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252941
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: NIH, University of Oxford, NIAID, Icahn School of Medicine at Mount Sinai
Keywords: SARS-CoV-2, adenovirus-based vaccine, intranasal administration, hamsters, primates
Summary of Study: Intranasal vaccination with ChAdOx1 nCoV-19/AZD1222 reduced virus concentrations in nasal swabs in two different SARS-CoV-2 animal models, warranting further investigation as a potential vaccination route for COVID-19 vaccines.
References: PMID: 34315826 / doi: 10.1126/scitranslmed.abh0755
Contact Info: Vincent Munster: [email protected]
URL: https://www.science.org/doi/10.1126/scitranslmed.abh0755?url_ver=Z39.88-2003&rf…
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Sanofi Pasteur, Yoh Services, Global Discovery Pathology, Translate Bio
Keywords: SARS-CoV-2, multiple animal species, mRNA vaccine, immune response, pathology, primates
Summary of Study: Several mRNA vaccine candidates were assessed; the lead 2P/GSAS vaccine formulation (designated MRT550) elicited potent nAbs as well as TH1-biased responses in NHPs, thus alleviating a hypothetical concern of potential vaccine-associated enhanced respiratory diseases known associated with TH2-biased responses. These data position MRT5500 as a viable vaccine candidate for entering clinical development.
References: PMID: 33875658 / doi: 10.1038/s41541-021-00324-5
Contact Info: Kirill Kalnin: [email protected]
URL: https://www.nature.com/articles/s41541-021-00324-5
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Fudan University, Second Military Medical University, Peking University
Keywords: SARS-CoV-2, cell-based vaccine, neutralizing antibodies, immune response, pathology, mice, primates
Summary of Study: The data present strong evidence supporting the promise of K562-S (a novel cell-based vaccine candidate that uses human cell K562 as a cellular carrier to display Spike (S) protein on the membrane) as a new effective vaccine for the prevention of COVID-19.
References: PMID: 34304724 / doi: 10.1080/22221751.2021.1957400
Contact Info: Jianqing Xu: [email protected]; Xiaoyan Zhang: [email protected]; Chen Zhao: [email protected]; Ping Zhao: [email protected]
URL: https://www.tandfonline.com/doi/full/10.1080/22221751.2021.1957400
NHP Species: rhesus macaques, african green monkeys
Year Published: 2021
Study Type/Review:
NPRC/Institute: Korea Advanced Institute of Science & Technology, GENOME INSIGHT, INC.
Keywords: SARS-CoV-2, infection models, organoids, primates
Summary of Study: Review of in vitro and in vivo models for SARS-CoV-2 infection.
References: PMID: 34187969 / doi: 10.14348/molcells.2021.0094
Contact Info: Young Seok Ju: [email protected]
URL: https://www.molcells.org/journal/view.html?doi=10.14348/molcells.2021.0094
NHP Species:
Year Published: 2021
Study Type/Review:
NPRC/Institute: Hebei Agricultural University; Military Veterinary Research Institute
Keywords: SARS-CoV-2, aerosol particles, virus transduction, primates
Summary of Study: Most SARS-CoV-2 aerosol particles exhaled by the cynomolgus monkeys in this study were smaller (<4.7 um), suggesting that aerosols might be a route for SARS-CoV-2 transmission.
References: PMID: 34152969 / doi: 10.3201/eid2707.203948
Contact Info: Yuwei Gao: [email protected]
URL: https://wwwnc.cdc.gov/eid/article/27/7/20-3948_article
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: The Wistar Institute, Perelman School of Medicine, NIAID, and others
Keywords: MERS-CoV, intradermal and intramuscular delivery, synthetic DNA vaccine, primates
Summary of Study: Results illustrate that a MERS spike antigen synthetic DNA vaccine administered in a 2-dose i.d. EP regimen can have positive impact in an important NHP challenge model protecting against symptoms and pathology.
References: PMID: 33886507 / doi: 10.1172/jci.insight.146082
Contact Info: David Weiner: [email protected]
URL: https://insight.jci.org/articles/view/146082
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Indian Council of Medical Research-National Institute of Virology
Keywords: SARS-CoV-2, inactivated SARS-CoV-2 vaccine candidate, immunogenicity, efficacy, primates
Summary of Study: A two-dose regimen of vaccine candidate BBV152 with adjuvant B induces a significant immune response and provides effective protection in rhesus macaques challenged with SARS-CoV-2.
References: PMID: 33654090 / doi: 10.1038/s41467-021-21639-w
Contact Info: Balram Bhargava: [email protected]
URL: https://www.nature.com/articles/s41467-021-21639-w
NHP Species: rhesus macaques, african green monkeys
Year Published: 2021
Study Type/Review:
NPRC/Institute: Harvard Univ., MIT, Tulane National Primate Research Center
Keywords: SARS-CoV-2, respiratory droplet generation and exhalation, primates
Summary of Study: The proportion of small respiratory droplets (the majority of particles exhaled in all subjects) increased at the peak of COVID-19 infection in NHPs. This confirms a previously published observation from the exhaled aerosol profile of a single COVID-19 positive human subject, and suggests that, at peak infection, there may be an elevated risk of the airborne transmission of SARS-CoV-2 by way of the very small droplets that transmit through conventional masks and travers distances far exceeding the conventional social distance of 2 m.
References: PMID: 33563754 / doi: 10.1073/pnas.2021830118
Contact Info: David Edwards: [email protected]; Chad Roy: [email protected]
URL: https://www.pnas.org/content/118/8/e2021830118.long
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Biomedical Primate Research Centre (BPRC); Utrecht University
Keywords: SARS-CoV-2, chest CT, ultrasound, pulmonary lesions, primates
Summary of Study: As has been observed in humans, the sensitivity of lung ultrasound (LUS) is high though the diagnostic efficacy or mild-to-moderate disease is relatively low. The low efficacy outweighs the advantages of LUS over CT (i.e. no need to transport the animals and the absence of ionizing radiation). For this reason, CT is still the imaging modality of choice for diagnosis, monitoring, and longitudinal assessment of a SARS-CoV-2 infection in NHPs.
References: PMID: 34778433 / doi: 10.3389/fvets.2021.748635
Contact Info: Marieke Stammes: [email protected]
URL: https://www.frontiersin.org/articles/10.3389/fvets.2021.748635/full
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Public Health England & Welcome Trust Centre for Human Genetics
Keywords: SARS-CoV-2, pathogenicity, comparative studies, primates
Summary of Study: SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques. This provides convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human populations and both species can e used to evaluate the safety and efficacy of interventions proposed against SARS-CoV-2. Importantly, accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.
References: PMID: 33627662 / doi: 10.1038/s41467-021-21389-9
Contact Info: Miles Carroll: [email protected]
URL: https://www.nature.com/articles/s41467-021-21389-9
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Public Health England, Inovio Pharmaceuticals, Oxford University
Keywords: SARS-CoV-2, synthetic DNA vaccine candidate, immune response, primates
Summary of Study: The results in a stringent preclinical SARS-CoV-2 animal model provide further support for the efficacy and safety of the synthetic DNA vaccine INO-4800 as a prophylactic countermeasure against COVID-19.
References: PMID: 34253420 / doi: 10.1016/j.vaccine.2021.06.057
Contact Info: Kate Broderick (Inovio Pharmaceuticals, Inc.; Miles Carroll (Public Health England)
URL: https://www.sciencedirect.com/science/article/pii/S0264410X21008070?via%3Dihub=
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: University of Oxford, Public Health England, The Pirbright Institute
Keywords: SARS-CoV-2, vaccine, immune response, pathology, primates
Summary of Study: Lung pathology caused by SARS-CoV-2 mediated pneumonia is reduced in rhesus macaques by prior vaccination with ChAdOx1 nCoV-19, which induced neutralising antibody responses after a single intramuscular administration.
References: PMID: 34312487 / doi: 10.1038/s42003-021-02443-0
Contact Info: Sarah Gilbert: [email protected]
URL: https://www.nature.com/articles/s42003-021-02443-0
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Chinese Academy of Medical Sciences and Peking Union Medical College
Keywords: SARS-CoV-2, ACE2 expression, transcription factor AhR, pathology, primates
Summary of Study: Data in this study show that the transcription factor AhR is able to bind the promoter of the ACE2 gene, thus promoting ACE2 expression and augmenting the subsequent pathology in SARS-CoV-2-infected lungs.
References: PMID: 33795851 / doi: 10.1038/s41423-021-00672-1
Contact Info: Chuan Qin: [email protected]; Bo Huang: [email protected]
URL: https://www.nature.com/articles/s41423-021-00672-1

