Skip to main content

Coronavirus Studies in Nonhuman Primate Models

This page provides a curated list of coronavirus studies and reviews using nonhuman primate (NHP) models.

Coronavirus Investigated: SARS-CoV-2
NHP Species:
Year Published: 2021
Study Type/Review: prevention
NPRC/Institute: Beijing DanXu Biopharmaceuticals
Keywords: SARS-CoV-2, monoclonal antibody, ELISA assay, pharmacokinetic, primates
Summary of Study: In cynomolgus monkeys, BD-604 (a fully human monoclonal antibody) possesses pharmacokinetic properties similar to natural IgGs.
References: PMID: 34215019 / doi: 10.1002/dta.3122
Contact Info: Xu Zhang: janet_xu_zhang@singlomics.com
URL: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/dta.3122
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Chinese Academy of Sciences
Keywords: SARS-CoV-2, combined intratracheal and intranasal inoculation, primates
Summary of Study: The severity of respiratory tract infection enhanced air transmission and induced wide and severe SARS-CoV-2 infection in the lungs, suggesting the occurrence of more severe infectiousness and lung injury in SARS-CoV-2 patients with nasal infection.
References: PMID: 33587263 / doi: 10.1007/s11427-020-1877-4
Contact Info: Yong-Tang Zheng: zhengyt@mail.kiz.ac.cn
URL: https://link.springer.com/article/10.1007%2Fs11427-020-1877-4
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: NIAID; Emory University Vaccine Center; BIOQUAL; Moderna; Johns Hopkins University
Keywords: SARS-CoV-2, variants of concern, booster, immune response, primates
Summary of Study: An additional, delayed boost with mRNA vaccines matched to either the original vaccine strain or to the heterologous challenge strain can have a marked and sustained effect on increaseing the breadth of neutralization against all VOCs tested and protection in both the lower and upper airways against the beta variant.
References: PMID: 34672695 / doi: 10.1126/science.abl8912
Contact Info: Robert Seder: rseder@mail.nih.gov; Barney Graham: bgraham@nih.gov
URL: https://www.science.org/doi/10.1126/science.abl8912?url_ver=Z39.88-2003&rfr_id=…
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: University of Washington; University of North Carolina at Chapel Hil; Fred Hutchinson Cancer Research Center; Stanford University School of Medicine; Institut Pasteur and CNRS UMR 3569; New Iberia Research Center and Department of Biology; Washington National Primate Research Center; University of Texas at Austin; GSK; Humabs Biomed SA; Bill & Melinda Gates Foundation\
Keywords: SARS-CoV-2, vaccine design, spike glycoprotein, receptor-binding domain, self-assembling nanoparticle, sarbecovirus, primates
Summary of Study: This study provides proof of the principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic.
References: PMID: 34619077 / doi: 10.1016/j.cell.2021.09.015
Contact Info: Neil King: neil@ipd.uw.edu; David Veesler: dveesler@uw.edu
URL: https://www.sciencedirect.com/science/article/pii/S009286742101062X?via%3Dihub=
Coronavirus Investigated: SARS-CoV-2
NHP Species: african green monkeys
Year Published: 2021
Study Type/Review:
NPRC/Institute: Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, Brigham and Women's Hospital/Harvard Medical School, LSU Health Science Center, Julius-Maximilians-Universitat Wurzburg, and more
Keywords: SARS-CoV-2, endotheliopathy, inflammation, primates, mice
Summary of Study: In addition to pneumocytes, SARS-CoV-2 also directly infects mature vascular endothelial cells in vivo and ex vivo which may contribute to cardiovascular complications in SARS-CoV-2 infection, including multipleorgan failure.
References: PMID: 34307198 / doi: 10.3389/fcimb.2021.701278
Contact Info: Xuebin Qin: xqin2@tulane.edu; Suleyman Ergun: sueleyman.erguen@uni-wuerzburg.de
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292147/
Coronavirus Investigated: SARS-CoV-2
NHP Species:
Year Published: 2021
Study Type/Review:
NPRC/Institute: Huazhong University of Science & Technology; Chinese Academy of Sciences; Peking University; Shanghai Junshi Biosciences Co., Ltd.; and others
Keywords: SARS-CoV-2, ACE2-blocking monoclonal antibody, receptor-binding domain, pathology, primates
Summary of Study: The ACE2-blocking MAb represents a broadly promising therapeutic candidate against emergence, re-emergence, and future zoonotic transmission events from SARSr-CoVs and variants.
References: PMID: 34404805 / doi: 10.1038/s41467-021-25331-x
Contact Info: Wenjie Tan: tanwj@ivdc.chinacdc.cn
URL: https://www.nature.com/articles/s41467-021-25331-x
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Harvard Medical School; Ragon Institute of MGH, MIT and Harvard; UNC Chapel Hill; Tufts University; Janssen Vaccines & Prevention.
Keywords: SARS-CoV-2, adenovirus vectored COVID-19 vaccine, humoral and cellular immune responses, genome variants, primates
Summary of Study: The Ad26.COV2.S vaccine provided robust protection against both WA1/2020 and B.1.351 variants.
References: PMID: 34161961 / doi: 10.1038/s41586-021-03732-8
Contact Info: Dan Barouch: dbarouch@bidmc.harvard.edu
URL: https://www.nature.com/articles/s41586-021-03732-8
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Erasmus Medical Center, Biomedical Primate Research Centre, Utrecht University, Friedrich-Loeffler-Institute, and others
Keywords: SARS-CoV-2, inactivated virus vaccine, immune response, pathology, mice, primates
Summary of Study: The surrogate virus-neutralization test (sVNT) detects high titers of RBD-binding antibodies and thus is potentially useful as an assay for large seroprevalence studies that aim at detecting high titers (vaccination trials or large-scale initial testing of potential animal reservoirs.)
References: PMID: 34458548 / doi: 10.1016/j.onehlt.2021.100313
Contact Info: Carmen Embregts: c.embregts@erasmusmc.nl; Corine GeurtsvanKessel: c. geurtsvankessel@erasmusmc.nl
URL: https://www.sciencedirect.com/science/article/pii/S2352771421001038?via%3Dihub=
Coronavirus Investigated: SARS-CoV-2
NHP Species: marmosets
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Russian Academy of Sciences; Sechenov First Moscow State Medical Univeristy; Lomonosov Moscow State University
Keywords: SARS-CoV-2, inactivated vaccine, long-term humoral immunogenicity, toxicity, mice, hamsters, primates
Summary of Study: A beta-propiolactone-inactivated whole virion vaccine (CoviVac) was asses and showed no signs of acute/chronic, reproductive, embryo- and fetotoxicity or teratogenic effects, as well as no allergenic properties in the animal species studied.
References: PMID: 34427172 / doi: 10.1080/22221751.2021.1971569
Contact Info: Liubov Kozlovskaya: lubov_i_k@mail.ru
URL: https://www.tandfonline.com/doi/full/10.1080/22221751.2021.1971569
Coronavirus Investigated: SARS-CoV-2
NHP Species:
Year Published: 2021
Study Type/Review:
NPRC/Institute: North Carolina State University; UNC-Chapel Hill; BreStem Therapeutics, Bioqual, Inc.
Keywords: SARS-CoV-2, ACE2 nanodecoys, inhalation therapy, mice and primates
Summary of Study: ACE2 nanodecoys derived from human lung spheroid cells (LSCs) can bind and neutralize SARS-CoV-2. In cynomolgus macaques challenged with live SARS-CoV-2, four doses of these nanodecoys delivered by inhalation promoted viral clearance and reduced lung injury. these results suggest that LSC-nanodecoys can serve as a potential therapeutic agent for treating COVID-19.
References: PMID: 34140674 / doi: 10.1038/s41565-021-00923-2
Contact Info: Ke Cheng: ke_cheng@ncsu.edu
URL: https://www.nature.com/articles/s41565-021-00923-2
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: NIAID/NIH; Emory University; Duke University Medical Center; Moderna; BIOQUAL
Keywords: SARS-CoV-2, mRNA-vaccine, immune response, hamsters, primates
Summary of Study: mRNA-1273 vaccine-induced antibody responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP.
References: PMID: 34529476 / doi: 10.1126/science.abj0299
Contact Info: Barney Graham: bgraham@nih.gov; Robert Seder: rseder@mail.nih.gov
URL: https://www.science.org/doi/10.1126/science.abj0299?url_ver=Z39.88-2003&rfr_id=…
Coronavirus Investigated: SARS-CoV-2
NHP Species: pigtail macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Chinese Academy of Sciences, Nanjing University
Keywords: SARS-CoV-2, pathology, primates
Summary of Study: SARS-CoV-2-infected northern pig-tailed macaques could be considered as a critically ill animal model in COVID-19 research.
References: PMID: 33998182 / doi: 10.24272/j.issn.2095-8137.2020.334
Contact Info: Yong-Tang Zheng: zhengyt@mail.kiz.ac.cn
URL: http://www.zoores.ac.cn/article/doi/10.24272/j.issn.2095-8137.2020.334
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: USC, , UCLA, City of Hope, Bioqual
Keywords: SARS-CoV-2, pancreatic beta cells, toxicity, metabolism, primates
Summary of Study: SARS-CoV-2 infection enhances beta cell stress that may compromise beta-cell function beyond the duration of the disease course, raising the possibility that the beta cell stress and injury may have clinical implications to the long-term future health of patients that have recovered from COVID19.
References: PMID: 34312617 / doi: 10.21203/rs.3.rs-592374/v1
Contact Info: Senta Georgia: sgeorgia@chla.usc.edu
URL: https://www.researchsquare.com/article/rs-592374/v1
Coronavirus Investigated: SARS-CoV-2
NHP Species: multiple species
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Weill Cornell Medical College
Keywords: SARS-CoV-2, antibody and T cell immunogenicity, testing vaccines in humans and primates, review
Summary of Study: This review article summaries what is known of the antibody and T cell immunogenicity of multiple preventive vaccines in NHPs and humans.
References: PMID: 33608249 / doi: 10.1126/sciadv.abe8065
Contact Info: John Moore: jpm2003@med.cornell.edu
URL: https://advances.sciencemag.org/content/7/12/eabe8065
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Walter Reed Army Institute of Research; Henry M. Jackson Foundation for the Advancement of Military Medicine; Washington University; NCI/NIH; BIOQUAL; Texas Biomedical Research Institute; Columbia University Vagelos College of Physicians and Surgeons.
Keywords: SARS-CoV-2, nanoparticle protein vaccine, humoral and cellular immune responses, virus variants, primates
Summary of Study: A ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein adjuvanted with Army Liposomal Formulation QS-21 induces robust and broad antibody and T cell responses, as well as protection against viral replication and lung pathology following high-dose respiratory tract challenge with SARS-CoV-2.
References: PMID: 34470866 / doi: 10.1073/pnas.2106433118
Contact Info: Kayvon Modjarrad: kmodjarrad@eidresearch.org; Diane Bolton: dbolton@hivresearch.org
URL: https://www.pnas.org/content/118/38/e2106433118.long
Coronavirus Investigated: SARS-CoV-2
NHP Species: macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Institute for Basic Science (IBS) (Repblic of Kores), Eulji University School of Medicine, Seol National University Hospital, Jeonbuk National University Medical School, Sungkyunkwan University School of Medicine
Keywords: SARS-CoV-2, nasal ciliated cells, virus tropism, primates
Summary of Study: Nasal multiciliated epithelial cells are th emain target for SARS-CoV-2 infection and replication in the upper airway during the early stages of COVID-19, implying that targeting nasal ciliated cells could be an ideal strategy to prevent SARS-CoV-2 propagation.
References: PMID: 34003804 / doi: 10.1172/JCI148517
Contact Info: Ji Hoon Ahn: ahnadun@kaist.ac.kr; JungMo Kim: jmkim@ibs.re.kr; Seon Pyo Hong: sp_hong@kaist.ac.kr; Young Tae Kim: ytkim@snu.ac.kr, Chang-Seop Lee: lcsmd@jbnu.ac.kr
URL: https://www.jci.org/articles/view/148517
Coronavirus Investigated: SARS-CoV-2
NHP Species:
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Universite Paris-Saclay/Inserm/CEA; Vaccine Research INstitute, Creteil, France; Inserm; Baylor Scott and White Research Institute; Institut Pasteur; Karolinska Institutet; and others
Keywords: SARS-CoV-2, subunit vaccine, receptor-binding domain, immune response, humanized mice, primates
Summary of Study: A single dose of the alphaCD40.RBD (a vaccine that targets the receptor-binding domain of the SARS-CoV-2 spike antigen to the CD40 receptor) administered without adjuvant boosts the protective response in COVID-10 convalescent NHPs.
References: PMID: 34471122 / doi: 10.1038/s41467-021-25382-0
Contact Info: Yves Levy: yves.levy@inserm.fr
URL: https://www.nature.com/articles/s41467-021-25382-0
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Harvard Medical School, University of North Carolina at Chapel Hill, Ragon Institute of MGH, MIT, and Harvard, Massachusetts Consortium on Pathogen Readiness
Keywords: SARS-CoV-2, adenovirus vaccine, immunogenicity and protective efficacy, mice
Summary of Study: RhAd52 vaccines elicit robust SARS-CoV-2 specific antibody responses and protect against clinical disease and viral replication in the lungs. These data validate the MA10 mouse model as a useful tool to screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for COVID-19.
References: PMID: 34523968 / doi: 10.1128/JVI.00974-21
Contact Info: Dan Barouch: dbarouch@bidmc.harvard.edu
URL: https://journals.asm.org/doi/10.1128/JVI.00974-21?url_ver=Z39.88-2003&rfr_id=or…
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Wisconsin National Primate Research Center, Harvard Medical School, Tufts University, BIOQUAL, Ragon Institute of MGH, MIT and Harvard
Keywords: SARS-CoV-2, prior infection, vaccination, virus variants, protection, hamsters, primates
Summary of Study: Data suggest partial but reduced short-term protective efficacy of WA1/2020 natural immunity against SARS-CoV-2 variants of concern. More research is needed to define protective efficacy against other SARS-CoV-2 variants and the immunologic mechanisms of protection against these variants.
References: PMID: 34546094 / doi: 10.1126/scitranslmed.abj2641
Contact Info: Dan Barouch: dbarouch@bidmc.harvard.edu
URL: https://www.science.org/doi/10.1126/scitranslmed.abj2641?url_ver=Z39.88-2003&rf…
Coronavirus Investigated: SARS-CoV-2
NHP Species:
Year Published: 2021
Study Type/Review:
NPRC/Institute: Battelle National Biodefense Institute; Gryphon Scientific LLC; Censeo Insight; Applied Research Associates
Keywords: SARS-CoV-2, inhalation, seroconversion, fever, dose response, primates
Summary of Study: SARS-CoV-2 infection and subsequent disease presentation are dependent on exposure dose in a nonhuman primate model of inhalational COVID-19.
References: PMID: 34424943 / doi: 10.1371/journal.ppat.1009865
Contact Info: Paul Dabisch: paul.dabisch@nbacc.dhs.gov
URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009865
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: VaxiGen, Inc., Genexine, Inc., Korea National Primate Research Centre, and others
Keywords: SARS-CoV-2, DNA-based vaccine, mice and primates, immune response
Summary of Study: A synthetic soluble SARS-CoV-2 spike (S) DNA-based vaccine candidate, GX-19, provides a durable protective immune response in rhesus macaques, supporting further development of GX-19 as a vaccine candidate for SARS-CoV-2.
References: PMID: 33804981 / doi: 10.3390/vaccines9040307
Contact Info: Yong Bok Seo: ybseo@slvaxigen.com; You Suk Suh: yssuh@genexine.com; Jung Joo Hong: hong75@kribb.re.kr
URL: https://www.mdpi.com/2076-393X/9/4/307
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Univ. of Pennsylvania Perelman School of Medicine
Keywords: SARS-CoV-2, D614G Spike Mutation, Vaccinated and immune sera, neutralization, primates
Summary of Study: Vaccinated NHPs using the nucleoside-modified mRNA-LNP vaccine platform encoding four differentSARS-CoV-2 spike immunogens generate antibody responses that not only recognize the G614 mutation that has taken over the pandemic, but also have stronger titers of neutralization to this virus variant.
References: PMID: 33306985/doi: 10.1016/j.chom.2020.11.012
Contact Info: Drew Weissman (no contact information)
URL: https://www.sciencedirect.com/science/article/pii/S193131282030634X?via%3Dihub=
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Chinese Academy of Medical Sciences
Keywords: SARS-CoV-2, inactivated vaccines, antibody-dependent enhancement, immunopathology, primates
Summary of Study: Results show that in the absence of cellular immunity, passive infusion of subneutralizing or nonneutralizing anti-SARS-CoV-2 antibodies could still provide some level of protection against infection upon challenge, and no low-level antibody-enhanced infection was observed.
References: PMID: 34736354 / doi: 10.1080/22221751.2021.2002670
Contact Info: Qihan Li: liqihan@imbcams.com.cn; Longding Liu: longdingliu@imbcams.com.cn; Cunbao Liu: cunbao_liu@163.com
URL: https://www.tandfonline.com/doi/full/10.1080/22221751.2021.2002670
Coronavirus Investigated: SARS-CoV-2
NHP Species: pigtail macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Nanogen Pharmaceutical Biotechnology Joint Stock Company; National Institute of Hygiene and Epidemiology (Hanoi, Vietnam)
Keywords: SARS-CoV-2, protein subunit vaccine, Nanocovax, pathogenesis, mice, hamsters, primates
Summary of Study: Nanocovax, a SARS-CoV-2 vaccine candidates based on recombinant protein production of the extracellular portion of the spike protein, was shown to be safe and effective in three animal models.
References: PMID: 34938290 / doi: 10.3389/fimmu.2021.766112
Contact Info: Min Si Do: minhsi@nanogenpharma.com
URL: https://www.frontiersin.org/articles/10.3389/fimmu.2021.766112/full
Coronavirus Investigated: SARS-CoV-2
NHP Species:
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: University of Amsterdam; INSERM, CEA; National Institute for Public Health and the Environment, RIVM; Public Health Service of Amsterdam; Tergooi Hospital; Amsterdam Neuroscience, AMC; Amsterdam Infectoin & Immunity, AMC; Amsterdam Infection & Immunity, VUmc; The University of Melbourne; Weill Medical College of Cornell University
Keywords: SARS-CoV-2, cross-reactive antibodies, human coronaviruses, primates
Summary of Study: The results from this study on the presence and specificity of cross-reactive antibodies to other hCoVs after SARS-CoV-2 infection and vaccination emphasize the feasibility of broad coronavirus vaccines and may guide future vaccine designs.
References: PMID: 34812143 / doi: 10.7554/eLife.70330
Contact Info: Marit J van Gils: m.j.vangils@amsterdamumc.nl
URL: https://elifesciences.org/articles/70330
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Chinese Academy of Medical Sciences, National Institute of Food and Drug Control (Beijing, China), Yunnan Provincial Infectious Disease Hospital, Yunnan Center for Disease Control and Prevention, Kunming Third People's Hospital
Keywords: SARS-CoV-2, inactivated virus vaccine, immune response, pathology, mice, primates
Summary of Study: Inactivated SARS-CoV-2 vaccine, produced by sequential inactivation with formaldehyde followed by propiolactone, was shown to be effective against SARS-Co-V 2 challenge in rhesus macaques.
References: PMID: 34462721 / doi: 10.1016/j.omtm.2021.08.005
Contact Info: Changgui Li: changguili@aliyun.com; Qihan Li: liqihan@imbcams.com.cn; Longding Liu: liuld@imbcams.com.cn
URL: https://www.sciencedirect.com/science/article/pii/S2329050121001315?via%3Dihub=
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: University of Tehran, Tabriz University of Medical Sciences, Karolinska Institute, University of Rochester Medical Center, Toyko University of Science, University of Veterinary Medicine (Vienna)
Keywords: SARS-CoV-2, immune response, reinfection, recovery, primates
Summary of Study: Review paper proposing a new strategy to predict the potential of reinfection in each identified category. This classification may help to distribute resources more meticulously to determine: Who needs to be serologically tested for SARS-CoV-2 neutralizing antibodies, what percentage of the population is immune to the virus, and who needs to be vaccinated.
References: PMID: 33520309 / doi: 10.1016/jare.2020.12.013
Contact Info: Younes Aftabi: aftably@tbzmed.ac.ir; Sasan Fereidouni: sasan.fereidouni@vetmeduni.ac.at
URL: https://www.sciencedirect.com/science/article/pii/S2090123220302630?via%3Dihub=
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Shanghai Jemincare Pharmaceuticals Co.; Chinese Academy of Sciences; tongji Medical College of Huazhong University of Science & Technology
Keywords: SARS-CoV-2, neutralizing antibodies, immune response, primates
Summary of Study: Two potent nABs against SARS-CoV-2 from naive phage-displayed human B cell single-chain variable fragment libraries were identified. One, JMB2002) not only showed potent in vitro blocking activity against a broad-spectrum of SARS-CoV-2 variants including the B.1.351 lineage, but also potent therapeutic efficacy and complete prophylactic protection against SARS-CoV-2 in a rhesus macaque infection model. Prophylactic and therapeutic countermeasure intervention of SARS-CoV-2 using antibody JMB2002 would likely slow down the transmission of currently emerged SARS-CoV-2 variants and result in more efficient control of the COVID-19 pandemic.
References: PMID: 34097570 / doi: 10.1080/19420862.2021.1930636
Contact Info: Su-Jun Deng: dengsujun@jemincare.com; Wuxiang Guan: guanwx@wh.iov.cn; Zhiming Yuan: yzm@wh.iov.cn
URL: https://www.tandfonline.com/doi/full/10.1080/19420862.2021.1930636
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: NCI, Frederick National Laboratory for Cancer Research, BIOQUAL, University of Athens School of Medicine, University of Washington
Keywords: SARS-CoV-2, DNA-based vaccine, immune response, primates
Summary of Study: A vaccine regimen comprising simultaneous co-immunization of DNA and Protein at the same anatomical site showed best neutralizing abilities and was more effective than DNA alone in inducing protective immune responses and controlling SARS-CoV-2 infection. An expansion of the DNA vaccine regimen to include co-immunization with Spike protein may be of advantage for SARS-CoV-2.
References: PMID: 34551020 / doi: 10.1371/journal.ppat.1009701
Contact Info: Barbara Felber: barbara.felber@nih.gov
URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009701
Coronavirus Investigated: SARS-CoV-2
NHP Species:
Year Published: 2021
Study Type/Review:
NPRC/Institute: King Mongkut's University of Technology; Chulalongkorn University; Mahidol University; B.F. Feed Company, Ltd.
Keywords: SARS-CoV-2, spike receptor-binding domain, immunization, convalescent sera, B-cell epitopes, primates
Summary of Study: The immunoinformatics method described could be a useful tool for identification of antibody epitopes in new virus variants and also other target proteins.
References: PMID: 34650130 / doi: 10.1038/s41598-021-99642-w
Contact Info: Yaowaluck Mapring Roshorm: yaowaluck.ros@kmutt.ac.th
URL: https://www.nature.com/articles/s41598-021-99642-w
Coronavirus Investigated: SARS-CoV-2
NHP Species:
Year Published: 2021
Study Type/Review:
NPRC/Institute: National Institute of Infectious Diseases, Japan; University of Tokyo; Kumamoto University, and others
Keywords: SARS-CoV-2, virus-specific CD8+ T-cell responses, virus replication, immune response, primates
Summary of Study: The effect of CD8+ cell depletion on SARS-CoV-2 replication when monoclonal anti-CD8 antibody is administered in the subacute phase was studied in cynomolgus macaques. Analysis revealed no significant impact of CD8+ cell depletion on viral replication, indicating the subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells.
References: PMID: 34280241 / doi: 10.1371/journal.ppat.1009668
Contact Info: Tetsuro Matano: tmatano@nih.go.jp; Takushi Nomura: nomutaku@nih.go.jp
URL: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1009668
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Chinese Academy of Medical Sciences; Peking Union Medical College; Capital Medical University
Keywords: SARS-CoV-2, pathology, myocardial injury, differential expression, primates
Summary of Study: SARS-CoV-2 infected rhesus macaques showed viral myocarditis, where inflammation and endothelial injury jointly resulted in cardiac damage.
References: PMID: 34489396 / doi: 10.1038/s413392-021-00747-5
Contact Info: Jiangning Liu: liujn@cnilas.org; Jing Wang: wangjing@ibms.pumc.edu.cn
URL: https://www.nature.com/articles/s41392-021-00747-5
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques, african green monkeys
Year Published: 2021
Study Type/Review:
NPRC/Institute: Harvard Univ., MIT, Tulane National Primate Research Center
Keywords: SARS-CoV-2, respiratory droplet generation and exhalation, primates
Summary of Study: The proportion of small respiratory droplets (the majority of particles exhaled in all subjects) increased at the peak of COVID-19 infection in NHPs. This confirms a previously published observation from the exhaled aerosol profile of a single COVID-19 positive human subject, and suggests that, at peak infection, there may be an elevated risk of the airborne transmission of SARS-CoV-2 by way of the very small droplets that transmit through conventional masks and travers distances far exceeding the conventional social distance of 2 m.
References: PMID: 33563754 / doi: 10.1073/pnas.2021830118
Contact Info: David Edwards: dedwards@seas.harvard.edu; Chad Roy: croy@tulane.edu
URL: https://www.pnas.org/content/118/8/e2021830118.long
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Karolinska Institutet; University of Cape Town
Keywords: SARS-CoV-2, virus genomic variants, antigenic sin, boost, passive immunization, mice, primates
Summary of Study: A single dose of adjuvanted beta variant receptor binding domain (RBD) protein broadens neutralizing antibody responses to heterologous VOCs.
References: PMID: 34723224 / doi: 10.1016/j.xcrm.2021.100450
Contact Info: Daniel Sheward: daniel.sheward@ki.se; Gunilla Karlsson Hedestam: gunilla.karlsson.hedestam@ki.se; Ben Murrell: benjamin.murrell@ki.se
URL: https://www.sciencedirect.com/science/article/pii/S2666379121003189?via%3Dihub=
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Copycat Sciences; Sporos Bioventures
Keywords: SARS-CoV-2, redelivery, analysis of the preclinical data and clinical efficacy, primates
Summary of Study: The gap between the strong preclinical data with remdesivir (RDV) across many virus models and its questionable clinical activitiy suggests that assumptions are being made at the preclinical level that do not reflect the conditions observed in patients.
References: PMID: 34252308 / doi: 10.1128/AAC.01117-21
Contact Info: Victoria Yan: victoria.yan@copycatsciences.com
URL: https://journals.asm.org/doi/10.1128/AAC.01117-21?url_ver=Z39.88-2003&rfr_id=or…
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: prevention
NPRC/Institute: Chinese Academy of Sciences; State Key Laboratory of Pathogen an dBiosecutiry, Academy of Military Medical Sciences, Beijing; Sinocelltech Ltd., National Institutes for Food and Drug Control, Beijing; Institute for Biological Product Control, Beijing
Keywords: SARS-CoV-2, monoclonal antibody, preclinical safety evaluation, cryo-EM structure, mice, primates
Summary of Study: Increasing access to panels of authentic neutralizing monoclonal antibodies will facilitate structure-function studies to unpick the underlying biological processes of virus-host interactions, and provide molecular basis for applying HB27 for potential COVID-19 treatment.
References: PMID: 34676096 / doi: 10.1093/nsr/nwaa297
Contact Info: Cheng-Feng Qin: qincf@bmi.ac.cn; Xiangxi Wang: xiangxi@ibp.ac.cn; Youchun Wang: wangyc@nifdc.org.cn; Zihe Rao: raozh@tsinghua.edu.cn; Liangzhi Xie: liangzhi@yahoo.com
URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7798916/
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: prevention
NPRC/Institute: California National Primate Research Center; University of California, Davis; Louisiana State University Health Sciences Center; The Rockefeller University.
Keywords: SARS-CoV-2, neuroinflammation, effector CD4 T cells, inflammation, cerebrospinal fluid, pneumonia, primates
Summary of Study: Neutralizing mABs administered preventatively to high-risk populations may mitigate the adverse inflammatory consequences of SARS-CoV-2 exposure.
References: PMID: 34706272 / doi: 10.1016/j.celrep.2021.109942
Contact Info: Smita Iyer: smiyer@ucdavis.edu
URL: https://www.sciencedirect.com/science/article/pii/S2211124721014157?via%3Dihub=
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Wuhan Institute of Virology, Chinese Academy of Sciences; University of the Chinese Academy of Sciences; Wuhan YZY Biopharma Co., Ltd.
Keywords: SARS-CoV-2, subunit vaccine, immunity, virus load, pathology, primates
Summary of Study: The RBD-homodimer vaccine candidate studied can induce both humoral and cellular response in vivo and prevent SARS-CoV-2 infection in both rodents and non-human primates. Production of this RBD vaccine candidate can be performed in large scale, which will enhance the vaccine supply and warrants future clinical trials.
References: PMID: 34493710 / doi: 10.1038/s41421-021-00320-y
Contact Info: Zhiming Yuan: yzm@wh.iov.cn; Chao Shan: shanchao@wh.iov.cn; Genfu Xiao: xiaogf@wh.iov.cn
URL: https://www.nature.com/articles/s41421-021-00320-y
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Korea Research Institute of Bioscience & Biotechnology, Chonnam National University, Chungbuk National University
Keywords: SARS-CoV-2, virus variants, microevolution, species specific variations, primates
Summary of Study: The genomes of SARS-CoV-2 differ according to individuals and species despite infection of the identical virus in NHPs. These results are important for the interprretation of longitudinal studies evaluating the evolution of the SARS-CoV-2 in humans and development of new diagnostics, vaccine, and therapeutics targeting SARS-CoV-2.
References: PMID: 34305860 / doi: 10.3389/fmicb.2021.694897
Contact Info: Jungjoo Hong: hong75@kribb.re.kr; Bon-Sang Koo: porco9@kribb.re.kr
URL: https://www.frontiersin.org/articles/10.3389/fmicb.2021.694897/full
Coronavirus Investigated: SARS-CoV-2
NHP Species: african green monkeys
Year Published: 2021
Study Type/Review:
NPRC/Institute: Laboratory of Virology, Hamilton, MT; NIAID; University of Plymouth, Plymouth, UK; The Vaccine Group, Ltd.
Keywords: SARS-CoV-2, virus genomic variants, pathology, virus replication, shedding, primates
Summary of Study: Results from the intranasal AGM COVID-19 surrogate model support the most recent data from B.1.1.7 in humans, providing direct empirical data for increased replication in the respiratory tissue, but with no enhancement of disease.
References: PMID: 34724885 / doi: 10.1080/22221751.2021.1997074
Contact Info: Heinz Feldmann: feldmannh@niaid.nih.gov
URL: https://www.tandfonline.com/doi/full/10.1080/22221751.2021.1997074
Coronavirus Investigated: SARS-CoV-2
NHP Species:
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: University of Amsterdam, Universite Paris-Saclay, University of Southampton, and others
Keywords: SARS-CoV-2, two-component protein nanoparticle vaccine, primates
Summary of Study: A two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein induces potent neutralizing antibody responses in cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication in the upper and lower airways. These nanoparticles are a promising vaccine candidate.
References: PMID: 33577765 / doi: 10.1016/j.cell.2021.01.035
Contact Info: Roger Le Grand: roger.le-grand@cea.fr; Rogier Sanders: r.w.sanders@amsterdamumc.nl
URL: https://www.sciencedirect.com/science/article/pii/S0092867421000787?via%3Dihub=
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Institute of Human Virology, Zhongshan School of Medicine
Keywords: SARS-CoV-2, convalescent sera, receptor-binding domain based nanoparticles, virus variants, primates
Summary of Study: Results show that as mutations accumulate in the RBD, spike proteins may acquire an antigenic shift that enable SARS-CoV-2 variants to eventually resist the current vaccines. Intensive monitoring of virus mutations and timely adjustment of the designed vaccines are required to control the viral pandemic.
References: PMID: 33580167 / doi: 10.1038/s41423-021-00641-8
Contact Info: Xin He: hexin59@mail.sysu.edu.cn
URL: https://www.nature.com/articles/s41423-021-00641-8
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: California National Primate Research Center, UC Davis
Keywords: SARS-CoV-2, CD4 T follicular helper (Tfh) cells, primates
Summary of Study: SARC-CoV-2 infection in rhesus macaques, either infused with convalescent plasma, normal plasma, or receiving no infusion showed induction of germinal center (GC) responses.
References: PMID: 33483492 / doi: 10.1038/s41467-020-20642-x
Contact Info: Koen Van Rompay: kkvanrompay@ucdavis.edu; Smita Iyer: smiyer@ucdavis.edu
URL: https://www.nature.com/articles/s41467-020-20642-x
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Karolinska Institute, University of Cape Town
Keywords: SARS-CoV-2, spike protein subunit vaccine, mice and primates, immune response
Summary of Study: Adjuvanted protein immunization with soluble SARS-CoV-2 Spike trimers, stabilized in prefusion conformation, results in potent antibody responses in mice and rhesus macaques, with neutralizing antibody titers exceeding those typically measured in SARS-CoV-2 seropositive humans by more than one order of magnitude.
References: PMID: 33842900 / doi: 10.1016/j.xcrm.2021.10052
Contact Info: Ben Murrell: benjamin.murrell@ki.se; Daniel Sheward: daniel.sheward@ki.se, Gunilla Karlsson Hedestam: gunilla.karlsson.hedestam@ki.se
URL: https://www.sciencedirect.com/science/article/pii/S2666379121000689?via%3Dihub=
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review:
NPRC/Institute: Chinese Academy of Sciences
Keywords: SARS-CoV-2, combined intratracheal and intranasal inoculation, virus load, primates
Summary of Study: Nasal infection may be regarded as an important index to assess the severity of COVID-19. Furthermore, treatments focused on nasal infection, like hypertonic saline nasal irrigation and gargling, should be considered as a therapeutic option for COVID-19.
References: PMID: 33587263 / doi: 10.1007/s11427-020-1877-4
Contact Info: Yong-Tang Zheng: zhengyt@mail.kiz.ac.cn
URL: https://link.springer.com/article/10.1007%2Fs11427-020-1877-4
Coronavirus Investigated: SARS-CoV-2
NHP Species: multiple species
Year Published: 2021
Study Type/Review:
NPRC/Institute: ORIP/NIH
Keywords: SARS-CoV-2, primates, animal resources, biosafety
Summary of Study: Sustaining and increasing NHP research capacity will require careful preparation and collaborations to improve existing infrastructure and expand established facilities, expertise, and programs.
References: PMID: 33927412 / doi: 10.1038/s41684-021-00760-9
Contact Info: Sheri Ann Hild: sheri.hild@nih.gov
URL: https://www.nature.com/articles/s41684-021-00760-9
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: therapeutics
NPRC/Institute: Chinese Academy of Medical Science and Peking Union Medical College; Genuine Biotech, Inc.; Wuhan Research Center for Infectious Diseases and Cancer; The First Affiliated Hospital of Henan University of Chinese Medicine; Henan Provincial Peoples Hospital; Henan Normal University; Zhengzhou University
Keywords: SARS-CoV-2, Azvudine, preclinical studies, Phase III trial, humans, primates
Summary of Study: Treating SARS-CoV-2 infected rhesus macaques with FNC reduced viral load, recuperated the thymus, improved lymphocyte profiles, alleviated inflammation and organ damage, and lessened ground-glass opacities in chest X-ray.
References: PMID: 34873151 / doi: 10.1038/s41392-021-00835-6
Contact Info: Zhenshun Cheng: chzs1990@163.com; Jun-Biao Chang: changjunbiao@zzu.edu.cn; Jian-Dong Jiang: jiang.jdong@163.com
URL: https://www.nature.com/articles/s41392-021-00835-6
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Yerkes National Primate Research Center, Emory University School of Medicine, Louisiana State University Health Science Center, Texas Children's Center for Vaccine Development, La Jolla Institute for Immunology, and others.
Keywords: SARS-CoV-2, vaccines and adjuvants, immune response, primates
Summary of Study: The adjuvant 3M-052-alum (previously shown to induce better immune responses against HIV) may be a way to improve the efficacy of SARS-CoV-2 vaccines.
References: PMID: 34266981 / doi: 10.1126/sciimmunol.abh3634
Contact Info: Sudhir Pai Kasturi: skastur@emory.edu; Maria Elena Bottazzi: bottazzi@bcm.edu
URL: https://www.science.org/doi/10.1126/sciimmunol.abh3634?url_ver=Z39.88-2003&rfr_…
Coronavirus Investigated: SARS-CoV-2
NHP Species: rhesus macaques
Year Published: 2021
Study Type/Review: vaccine
NPRC/Institute: Wuhan Institute of Virology, Tongji Medical College, University of Chinese Academy of Sciences, Wuhan Institute of Biological Products Co.
Keywords: SARS-CoV-2, inactivated vaccine, mice and primates, immune response
Summary of Study: The authors tested the safety, immunogenicity and efficacy of an inactivated vaccine based on on the whole viral particles in human ACE2 transgenic mouse and in NHPs. This inactivated vaccine successfully induced SARS-CoV-2-specific neutralizing antibodies in both models.
References: PMID: 33835391 / doi: 10.1007/s12250-021-00376-w
Contact Info: Xing-Lou Yang: yangsx@wh.iov.cn; Shuo Shen: shenshuo1@sinopharm.com; Zhi-Ming Yuan: yzm@wh.iov.cn
URL: https://link.springer.com/article/10.1007%2Fs12250-021-00376-w
Coronavirus Investigated: SARS-CoV-2
NHP Species: multiple species
Year Published: 2021
Study Type/Review:
NPRC/Institute: Xiamen University, The University of HongKong, Shantou University, Chinese Academy of Medical Sciences
Keywords: SARS-CoV-2, review of the primate models, clinical symptoms, pathogenesis, applications
Summary of Study: Review summarizes the benefits and caveats of NHP models currently available for SARS-CoV-2 and discusses key topics including model optimization, extended application, and clinical translation.
References: PMID: 34490832 / doi: 10.1080/22221751.2021.1976598
Contact Info: Tong Cheng: tcheng@xmu.edu.cn; Ningshao Xia: nsxia@xmu.edu.cn
URL: https://www.tandfonline.com/doi/full/10.1080/22221751.2021.1976598