Skip to main content

Innate Immunity Stimulation via CpG Oligodeoxynucleotides Ameliorates Alzheimer’s Disease Pathology in Aged Squirrel Monkeys

., . .

Alzheimer's disease is the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The authors have shown in transgenic Alzheimer's disease mouse models that harnessing innate immunity via TLR9 agonist CpG oligodeoxynucleotides (ODNs) modulates age-related defects associated with immune cells and safely reduces amyloid plaques, oligomeric amyloid-β, tau pathology, and cerebral amyloid angiopathy (CAA). They used a nonhuman primate model for sporadic Alzheimer's disease pathology that develops extensive CAA-elderly squirrel monkeys.

A Novel Tau-Based Rhesus Monkey Model of Alzheimer’s Pathogenesis

., . .

Alzheimer’s disease (AD) is becoming more prevalent as the population ages, but there are no effective treatments for this devastating condition. Researchers developed a rhesus monkey model of AD by targeting the entorhinal cortex with an adeno-associated virus expressing mutant tau protein. Within 3 months they observed evidence of misfolded tau propagation, similar to what is hypothesized for AD patients. Treated monkeys developed robust alterations in AD core biomarkers in cerebrospinal fluid and blood.

SARS-CoV-2 Infects Neurons and Induces Neuroinflammation in a Non-Human Primate Model of COVID-19

., . .

SARS-CoV-2 causes brain fog and other neurological complications in some patients. It has been unclear whether SARS-CoV-2 infects the brain directly or whether central nervous system sequelae result from systemic inflammatory responses triggered in the periphery. Using a rhesus macaque model, researchers detected SARS-CoV-2 in the olfactory cortex and interconnected regions 7 days after infection, demonstrating that the virus enters the brain through the olfactory nerve. Neuroinflammation and neuronal damage were more severe in elderly monkeys with type 2 diabetes.

Effect of Hormone Replacement Therapy on Amyloid Beta (Aβ) Plaque Density in the Rhesus Macaque Amygdala

., . .

Amyloid beta plaque density is associated with Alzheimer’s disease. In this study, the authors examined its concentration in aged female nonhuman primates’ cerebrospinal fluid, as well as in the amygdala, an area of the brain involved with emotion and memory. They set out to test the hypothesis that estrogen hormone replacement therapy can beneficially affect amygdala Aβ plaque density in “surgically menopausal” females (i.e., aged rhesus macaques that had undergone ovariectomy).

Association of Age at Menopause and Hormone Therapy Use With Tau and β-Amyloid Positron Emission Tomography

., . .

To understand the predominance (70%) of women among individuals with Alzheimer’s disease, the investigators studied regional tau and β-amyloid (Aβ) in relation to age at menopause and hormone therapy (HT) in postmenopausal women and age-matched men using positron emission tomography. The study demonstrated that females exhibited higher tau deposition compared with age-matched males, particularly in the setting of elevated Aβ; earlier age at menopause and late initiation of HT were associated with increased tau vulnerability.

Mechanism of STMN2 Cryptic Splice-Polyadenylation and its Correction for TDP-43 Proteinopathies

., . .

Loss of the RNA-binding protein TDP-43 from the nuclei of affected neurons is a hallmark of neurodegeneration in TDP-43 proteinopathies (e.g., amyotrophic lateral sclerosis, frontotemporal dementia). Loss of functional TDP-43 is accompanied by misprocessing of the stathmin-2 (STMN2) RNA precursor. Investigators determined the elements through which TDP‑43 regulates STMN2 pre‑mRNA processing and identified steric binding antisense oligonucleotides that are capable of restoring normal STMN2 protein and RNA levels.

A Class of Anti-Inflammatory Lipids Decrease with Aging in the Central Nervous System

., . .

Impaired lipid metabolism in the brain has been implicated in neurological disorders of aging, yet analyses of lipid pathway changes with age have been lacking. The researchers examined the brain lipidome of mice of both sexes across the lifespan using untargeted lipidomics. They found that 3-sulfogalactosyl diacylglycerols (SGDGs) are structural components of myelin and decline with age in the central nervous system. The researchers discovered that SGDGs also are present in male human and rhesus macaque brains, demonstrating their evolutionary conservation in mammals.

Chronic TREM2 Activation Exacerbates Aβ-Associated Tau Seeding and Spreading

., . .

Using a mouse model for amyloidosis in which Alzheimer’s Disease (AD)–associated tau is injected into the brain to induce amyloid β (Aβ)–dependent tau seeding/spreading, investigators found that chronic administration of an activating triggering receptor expressed on myeloid cells 2 (TREM2) antibody increases microglial activation of dystrophic neurites surrounding Aβ plaques (NP) but increases NP-tau pathology and neuritic dystrophy without altering Aβ plaque burden.

The WormGUIDES Atlas: A Window into the Mysteries of Neurodevelopment in Caenorhabditis elegans

More than 30 years after the adult nervous system and cell lineage of the roundworm Caenorhabditis elegans were first mapped,1 that map of neuron connectivity (i.e., the connectome) still enables scientists to better understand diverse neurobiological mechanisms. Today, C. elegans remains a widely used model for neuroscience research because of its short life cycle, transparent body, and homology to human genes expressed in neurodevelopment.

Subscribe to Alzheimer's Disease