Grantee Publications

 

Cryopreservation Method for Drosophila Melanogaster Embryos

Zhan, Li. et al., Nature Communications, 2021 April 23;12(1):2412

https://www.nature.com/articles/s41467-021-22694-z

D. melanogaster is a premier model for biomedical research. However, preservation of Drosophila stocks is labor intensive and costly to pass live cultures monthly to fresh food. Researchers at University of Minnesota reported an efficient method for cryopreservation by optimizing key steps including embryo permeabilization and cryoprotectant agent loading. This method resulted in >10% of embryos developing into fertile adults after cryopreservation for 25 distinct strains from different sources.  The further optimization and wide adoption of this protocol will solve the long-standing issue in reliably preserving Drosophila stocks and will significantly impact Drosophila as a model organism for biomedical research.

Supported by ORIP (1R21OD028758), NIGMS, NSF, and other sources.

 

MRI Characteristics of Japanese Macaque Encephalomyelitis (JME): Comparison to Human Diseases

Tagge, Ian J. et al., 2021; Journal of Neuroimaging, 2021 May;31(3):480-492

https://onlinelibrary.wiley.com/doi/10.1111/jon.12868

MRI data were obtained from 114 Japanese macaques including 30 animals of both sexes that presented with neurological signs of JME. Quantitative estimates of blood-brain-barrier permeability to gadolinium-based-contrast agent (GBCA) were obtained in acute, GBCA-enhancing lesions, and longitudinal imaging data were acquired for 15 JME animals. Intense, focal neuroinflammation was a key MRI finding in JME. Several features of JME compare directly to human inflammatory demyelinating diseases. The development and validation of noninvasive imaging biomarkers in JME provides the potential to improve diagnostic specificity and contribute to the understanding of human demyelinating diseases.

Supported by ORIP (P51OD011092, S10OD018224), NINDS, and NIBIB.

 

Evidence in Primates Supporting the Use of Chemogenetics for the Treatment of Human Refractory Neuropsychiatric Disorders

Roseboom, Patrick H. et al., Molecular Therapy, 2021 April 23;S1525-0016(21)00209-4

https://doi.org/10.1016/j.ymthe.2021.04.021

A rhesus macaque model of pathological anxiety was used to investigate the feasibility of decreasing anxiety using chemogenetics, known as DREADDs (designer receptors exclusively activated by designer drugs), to reduce amygdala neuronal activity. A low-dose clozapine administration strategy was developed to induce DREADD-mediated amygdala inhibition. Compared to controls, clozapine selectively decreased anxiety-related freezing behavior in the human intruder paradigm in the chemogentic monkeys, while coo vocalizations and locomotion were unaffected. These results are an important step in establishing chemogenetic strategies for patients with refractory neuropsychiatric disorders in which amygdala alterations are central to disease pathophysiology.

Supported by ORIP (P51OD011106), NIMH, and NICHD. 

 

Rhesus Macaques Build New Social Connections After a Natural Disaster

Testard, Camille et al. Current Biology. 2021 April 8; S0960-9822(21)00368-7

https://www.sciencedirect.com/science/article/pii/S0960982221003687

Climate change has increased the frequency and intensity of weather-related disasters such as hurricanes and floods. In 2017, Puerto Rico suffered its worst natural disaster, Hurricane Maria, leaving 3,000 dead and provoking a mental health crisis. Cayo Santiago Island, home to a population of rhesus macaques (Macaca mulatta), was devastated by this storm. Testard et al. compared social networks of two groups of macaques before and after the hurricane and found an increase in affiliative social connections, driven largely by monkeys most socially isolated before Hurricane Maria. Further analysis revealed monkeys invested in building new relationships rather than strengthening existing ones.

Supported by ORIP (P40 OD012217), NIA, NIMH

 

Functional Convergence of a Germline-Encoded Neutralizing Antibody Response in Rhesus Macaques Immunized with HCV Envelope Glycoproteins

Chen, Fang et al., Immunity. 2021 Apr 13; 54(4):781-796

https://doi.org/10.1016/j.immuni.2021.02.013

Immunoglobulin heavy chain variable gene IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) targeting the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection in humans. An IGHV1-69 ortholog, VH1.36, is preferentially used for bnAbs isolated from rhesus macaques immunized against HCV Env. Researchers investigated the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by HCV Env vaccination of macaques and compared their findings to IGHV1-69-encoded bnAbs from HCV patients. The investigators found that macaque VH1.36- and human IGHV1-69-encoded bnAbs share many common features, which provides an excellent framework for rational HCV vaccine design and testing.

Supported by ORIP (P51OD011133, U42OD010442), NIAID, NCI, NIGMS, Dept. of Energy, Independent Research Fund Denmark, Novo Nordisk Foundation, Candys Foundation, and Lundbeck Foundation

 

Psychosocial Stress Alters the Immune Response and Results in Higher Viral Load During Acute SIV Infection in a Pigtailed Macaque Model of HIV

Guerrero-Martin, Selena et al., Journal of Infectious Diseases. 2021 May 10; Online ahead of print.

https://doi.org/10.1093/infdis/jiab252

Social distancing is an important countermeasure for a pandemic, but social isolation may also have adverse health outcomes in the context of infectious diseases, such as HIV. Researchers compared commonly measured parameters of HIV progression between singly and socially housed simian immunodeficiency virus (SIV)-infected pigtailed macaques. Throughout acute SIV infection, singly housed pigtailed macaques had a higher viral load in the plasma and cerebrospinal fluid and demonstrated greater CD4+ T cell declines and more CD4+ and CD8+ T cell activation compared to socially housed macaques. These findings suggest that psychosocial stress could augment the progression of HIV infection.

Supported by ORIP (U42OD013117, P40OD013117, K01OD018244), NIAID, NINDS, NIMH, AALAS Grants for Laboratory Animal Science, and Blaustein Pain Foundation.

 

Creb5 Establishes the Competence for Prg4 Expression in Articular Cartilage

Zhang, Cheng-Hai et al., Communications Biology. 2021 Mar 12; 4(1):332

https://doi.org/10.1038/s42003-021-01857-0

Cells comprising the superficial zone of articular cartilage express lubricin, encoded by the Prg4 gene, that lubricates joints. Researchers identified Creb5 as a transcription factor that is required for TGF-β and EGFR signaling to induce Prg4 expression. Forced expression of Creb5 in deep-zone chondrocytes of articular cartilage confers competence for TGF-β and EGFR signals to induce Prg4 expression. The researchers showed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, which work together with a more distal regulatory element to drive induction of Prg4 by TGF-β. Thus, Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage.

Supported by ORIP (U42OD11158), NIAMS, NIDDK, and Arthritis National Research Foundation.

 

Nonhuman Primate Models for SARS-CoV-2 Research: Cryopreservation as a Means to Maintain Critical Models and Enhance the Genetic Diversity of Colonies

Arnegard, Matthew and Hild, Sheri. 2021 May 24. Online ahead of print.

https://doi.org/10.1038/s41684-021-00792-1

This commentary, written by ORIP staff, addresses the need for improved cryopreservation methods and resources for nonhuman primate (NHP) gametes and embryos to safeguard newly developed NHP models and enhance the genetic diversity of NHP colonies without reliance on animal importations. Cryopreservation also plays critical roles in medical approaches to preserve the fertility of patients who must undergo potentially gonadotoxic treatments, as well as nascent genome editing efforts to develop new NHP models for human diseases. Given these diverse benefits to research progress, ORIP continues to fund the development of cryopreservation tools and approaches for NHPs and other animal models.

 

A Chromosome-level Genome of Astyanax Mexicanus Surface Fish for Comparing Population-specific Genetic Differences Contributing to Trait Evolution

Warren, Wesley C. et al. Nature Communications 2021 Mar 4;12(1):1447 (PMC7933363)

https://www.nature.com/articles/s41467-021-21733-z

Surface-dwelling populations of the cave-dwelling Astyanax mexicanus are well adapted to subterranean life. Warren et al. present a chromosome-level surface fish genome and performed quantitative trait locus (QTL) mapping analyses finding new candidate genes for eye loss such as dusp26. They used CRISPR gene editing in A. mexicanus to confirm the essential role of a gene within an eye size QTL, rx3, in eye formation; they generated the first genome-wide evaluation of deletion variability across cavefish populations. This surface fish genome reference provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.

Supported by ORIP (R24 OD011198), NIA, NICHD, NIGMS, NIDCR.

 

The SARS-CoV-2 Receptor and Other Key Components of the Renin-Angiotensin-Aldosterone System Related to COVID-19 are Expressed in Enterocytes in Larval Zebrafish

Postlethwait, John H. et al. Biology Open (2021) 10, bio058172. doi:10.1242/bio.058172

https://bio.biologists.org/content/10/3/bio058172.article-info

Hypertension and respiratory inflammation are exacerbated by the Renin-Angiotensin-Aldosterone System (RAAS), which normally protects from dropping blood pressure via Angiotensin II (Ang II) produced by the enzyme Ace. The Ace paralog Ace2 degrades Ang II and serves as the SARS-CoV-2 receptor. To exploit zebrafish to understand the relationship of RAAS to COVID-19, the group conducted genomic and phylogenetic analyses. Results identified a type of enterocyte as the expression site of zebrafish orthologs of key RAAS components, including the SARSCoV-2 co-receptor.  Results identified vascular cell subtypes expressing Ang II receptors and identified cell types to exploit zebrafish as a model for understanding COVID-19 mechanisms.

Supported by ORIP (R24 OD026591, R01 OD011116), NIGMS, NICHD.

 

A Novel Tau-Based Rhesus Monkey Model of Alzheimer’s Pathogenesis

Beckman, Danielle et al., Alzheimer’s & Dementia. 2021 Mar 18; Epub ahead of print.

https://pubmed.ncbi.nlm.nih.gov/33734581/

Alzheimer’s disease (AD) is becoming more prevalent as the population ages, but there are no effective treatments for this devastating condition. Researchers developed a rhesus monkey model of AD by targeting the entorhinal cortex with an adeno-associated virus expressing mutant tau protein. Within 3 months they observed evidence of misfolded tau propagation, similar to what is hypothesized for AD patients. Treated monkeys developed robust alterations in AD core biomarkers in cerebrospinal fluid and blood. These results highlight the initial stages of tau seeding and propagation in rhesus macaques, a potentially powerful translational model with which to test new AD therapies.

Supported by ORIP (P51OD 011107) and NIA.

 

Evaluating a New Class of AKT/mTOR Activators for HIV Latency-Reversing Activity Ex Vivo and In Vivo

Gramatica, Andrea et al., Journal of Virology. 2021 Feb 3; Epub ahead of print.

https://doi.org/10.1128/JVI.02393-20

Activation of latent HIV-1 expression could benefit many HIV cure strategies. Researchers evaluated two AKT/mTOR activators, SB-216763 and tideglusib, as a potential new class of LRAs. The drugs reactivated latent HIV-1 present in blood samples from aviremic individuals on antiretroviral therapy without causing T cell activation or impaired effector function of cytotoxic T lymphocytes or NK cells. When tested in vivo in monkeys, tideglusib showed unfavorable pharmacodynamic properties and did not reverse SIV latency. The discordance between the ex vivo and in vivo results underscores the importance of developing novel LRAs that allow systemic drug delivery to relevant anatomical compartments.

Supported by ORIP (P51OD011092), NIAID, NIGMS, NIMH, NCI, amfAR Institute for HIV Cure Research, University of California San Francisco-Gladstone Institute of Virology & Immunology Center for AIDS Research, and James B. Pendleton Charitable Trust.

 

Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies against the SHIV Challenge Virus but Not with V1V2 Vaccine–Induced Anti-V2 Antibodies Alone

Hessell, Ann J. et al., Journal of Immunology. 2021 Mar 15; 206(6):1266-1283.

https://doi.org/10.4049/jimmunol.2001010

In the RV144 human immunodeficiency virus (HIV) vaccine trial, the only immune response associated with reduced infection was a high level of antibodies (Abs) targeting the second variable (V2) loop of the HIV envelope protein (Env). The mechanism underlying this suggested contribution of V2 Abs to protection remains unknown. Researchers tested the role of vaccine-induced anti-V2 Abs in rhesus macaques. Three vaccines strategies were designed to induce only V1V2 Abs before simian-human immunodeficiency virus (SHIV) challenge. Vaccine-induced V2 Abs did not independently control SHIV infection. However, neutralizing and virus capture anti-Env Abs were found to correlate with SHIV control.

Supported by ORIP (P51OD011092) and NIAID.

 

Immune Variations Throughout the Course of Tuberculosis Treatment and its Relationship with Adrenal Hormone Changes in HIV-1 Patients Co-Infected with Mycobacterium tuberculosis

Vecchione, María Belén et al., Tuberculosis. 2021 Mar; 127:102045.

https://doi.org/10.1016/j.tube.2020.102045

The probability of developing tuberculosis (TB) is 19 times higher in people infected with human immunodeficiency virus (HIV) compared to the general population. As host immune response defines the course of infection, researchers aimed to identify immuno-endocrine changes over six months of anti-TB chemotherapy in HIV+ people. Throughout the course of anti-TB/HIV treatment, plasma dehydroepiandrosterone (DHEA) and DHEA-sulfate levels increased while cortisol decreased. The balance between cortisol and DHEA, together with clinical assessment, served as a predictor of clinical outcome after anti-TB treatment. This research suggests that combined anti-HIV/TB therapies may partially restore both immune function and adrenal hormone levels.

Supported by ORIP (P51OD011133), Argentina’s National Agency for the Promotion of Research, Technological Development, and Argentine Innovation, and the University of Buenos Aires.

 

Natural Killer Cells Activated through NKG2D Mediate Lung Ischemia-Reperfusion Injury

Calabrese et al., J Clin Invest. 2021 Feb 1;131(3):e137047

Pulmonary ischemia-reperfusion injury (IRI) causes early mortality and has no effective therapies. While natural killer (NK) cells are innate lymphocytes capable of recognizing injured cells, their roles in acute lung injury are incompletely understood. Here, investigators demonstrated that NK cells were increased in frequency and cytotoxicity in 2 different IRI mouse models. They showed that NK cells trafficked to the lung tissue from peripheral reservoirs and were more mature within lung tissue. Acute lung ischemia-reperfusion injury was blunted in a NK cell–deficient mouse strain but restored with adoptive transfer of NK cells. In human lung tissue, NK cells were increased at sites of ischemia-reperfusion injury and activated NK cells were increased in prospectively-collected human bronchoalveolar lavage in subjects with severe IRI. These data support a causal role for recipient peripheral NK cells in pulmonary IRI via NK cell NKG2D receptor ligation. Therapies targeting NK cells may hold promise in acute lung injury. Supported by ORIP (1S10OD026940), NHLBI, NIDDK, and other sources.

 

Fructose Stimulated De Novo Lipogenesis Is Promoted by Inflammation

Jelena et al., Nat Metab. 2020 Oct; 2(10):1034-1045

Non-alcoholic fatty liver disease (NAFD) affects 30% of adult Americans. While NAFD starts as simple steatosis with little liver damage, its severe manifestation as non-alcoholic steatohepatitis (NASH) is a leading cause of liver failure, cirrhosis, and cancer. Fructose consumption is proposed to increase the risk of hepatosteatosis and NASH. Excessive intake of fructose causes barrier deterioration and low-grade endotoxemia. Using a mouse model, the study examined the mechanism of how fructose triggers these alterations and their roles in hepatosteatosis and NASH pathogenesis. The results demonstrated that microbiota-derived Toll-like receptor (TLR) agonists promote hepatosteatosis without affecting fructose-1-phosphate (F1P) and cytosolic acetyl-CoA. Activation of mucosal-regenerative gp130 signaling, administration of the YAP-induced matricellular protein CCN1 or expression of the antimicrobial peptide Reg3b (beta) counteract fructose-induced barrier deterioration, which depends on endoplasmic-reticulum stress and subsequent endotoxemia. Endotoxin engages TLR4 to trigger TNF production by liver macrophages, thereby inducing lipogenic enzymes that convert F1P and acetyl-CoA to fatty acid in both mouse and human hepatocytes. The finding may be of relevance to several common liver diseases and metabolic disorders. Supported by ORIP (S10OD020025), NCI, NIEHS, NIDDK, NIAID, and NIAAA.

 

Best Practices for Correctly Identifying Coronavirus by Transmission Electron Microscopy

Bullock et al., Kidney Int 2021 Apr;99(4):824-827

This paper provides strategies for identifying coronaviruses by transmission electron microscopy in ultrathin sections of tissues or tissue cultures. As illustrated by results in the literature, organ damage may be incorrectly attributed to the presence of virus, since images of coronavirus may resemble subcellular organelles. The paper also references numerous biochemical and imaging techniques to aid an investigator in avoiding pseudo positive identifications. ORIP grant support: S10OD026776

 

A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution

Warren WC et al. Nat Commun. 2021 Mar 4;12(1):1447 (PMC7933363)

Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic (morphological adaptation of an animal to living in the constant darkness of caves) traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Warren et al. present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, they performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss (dusp26). They also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species.

Supported by ORIP (R24 OD011198), NIA, NICHD, NIGMS, NIDCR.

 

A Novel Tau-Based Rhesus Monkey Model of Alzheimer’s Pathogenesis

Beckman et al., Alzheimer’s & Dementia. 2021 Mar 18; Epub ahead of print

Alzheimer’s disease (AD) is becoming more prevalent as the population ages, but there are no effective treatments for this devastating condition. Promising findings in rodents have failed to translate into successful AD therapies. Researchers developed a new rhesus monkey model of AD by targeting the entorhinal cortex (ERC) with an adeno-associated virus expressing a double tau mutation. Within 3 months they observed evidence of misfolded tau propagation, similar to what is hypothesized for AD patients. Tau spreading was accompanied by a strong neuroinflammatory response driven by TREM2+ microglia. Treated monkeys also developed robust alterations in AD core biomarkers in cerebrospinal fluid and blood. These results highlight the initial stages of tau seeding and propagation in rhesus macaques, a potentially powerful translational model with which to develop and test new AD therapies. ORIP grant support: P51 OD011107.

 

A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing

Jian Zhang, et al., Nat Commun. 2021 Mar 15;12(1):1670 (https://pubmed.ncbi.nlm.nih.gov/33723267/)

Skin wound healing is a dynamic and interactive process involving the collaborative efforts of growth factors, extracellular matrix (ECM), and different tissue and cell lineages. Although accumulating studies with a range of different model systems have increased our understanding of the cellular and molecular basis underlying skin scar formation, they have not been effectively translated to therapy. Development of effective therapeutic approaches for skin scar management is urgently needed. In this study, team of investigators devise a water-oil-water double emulsion strategy to encapsulate proteins within a photo-crosslinkable poly-lactic-co-glycolic acid (PLGA) shell, which can produce microcapsules with pulsatile drug release kinetics after administration. The results show that pulsatile release of the TGF-β inhibitor can accelerate skin wound closure while suppressing scarring in murine skin wounds and large animal preclinical models, suggesting that it could be an effective approach to achieve scarless wound healing in skin. ORIP support grant: R01OD023700.

 

Resident Memory T Cells Form during Persistent Antigen Exposure Leading to Allograft Rejection

Abou-Daya et al.,   Sci Immunol., 2021 Mar 19;6(57):eabc8122..

It is not clear whether Tissue-resident memory T cells (TRM) function in organ transplants where cognate antigen persists. This is a key question in transplantation as T cells are detected long term in allografts. Investigators showed that antigen-specific and polyclonal effector T cells differentiated in the graft into TRM and subsequently caused allograft rejection. Graft TRM proliferated locally, produced interferon-γ upon restimulation, and their in vivo depletion attenuated rejection. The vast majority of antigen-specific and polyclonal TRM lacked phenotypic and transcriptional exhaustion markers. Single-cell analysis of graft T cells early and late after transplantation identified a transcriptional program associated with transition to the tissue-resident state that could serve as a platform for the discovery of therapeutic targets. Thus, recipient effector T cells differentiate into functional graft TRM that maintain rejection locally. Targeting these TRM could improve renal transplant outcomes. ORIP grant support: 1S10OD011925-01 and 1S10OD019942-01

 

Metabolomics analysis of follicular fluid coupled with oocyte aspiration reveals importance of glucocorticoids in primate periovulatory follicle competency

Ravisankar et al., 2021 https://www.nature.com/articles/s41598-021-85704-6

Assisted reproductive therapy in primates requires ovarian stimulation protocols, which result in multiple heterogeneous oocytes with variable capacity for fertilization, cleavage, and blastocyst formation. Recovered oocytes from rhesus macaque follicles (n=74 follicles) were fertilized in vitro and classified as failed to cleave, cleaved but arrested, or able to form blastocysts. Metabolomics analysis of the follicular fluid identified 60 metabolites that were different among embryo classifications; key was an increase in the intrafollicular ratio of cortisol to cortisone in the blastocyst group, which was associated with translocation of the glucocorticoid receptor, NR3C1. The data suggest a role for NR3C1 in the regulation of follicular processes, such as expansion of cumulus granulosa cells, via paracrine signaling. Supported by ORIP (P51OD011092) and NICHD.

 

The giant axolotl genome uncovers the evolution, scaling, and transcriptional control of complex gene loci

Schloissnig S. et al. Proc Natl Acad Sci U S A. 2021 Apr 13;118(15):e2017176118.

Vertebrates harbor recognizably orthologous gene complements but vary 100-fold in genome size. How chromosomal organization scales with genome expansion is unclear, and how acute changes in gene regulation, as during axolotl limb regeneration, occur in the context of a vast genome has remained a riddle. Here, Schloissnig et al. describe the chromosome-scale assembly of the giant, 32 Gb axolotl genome. Hi-C contact data revealed the scaling properties of interphase and mitotic chromosome organization. Analysis of the assembly yielded understanding of the evolution of large, syntenic multigene clusters, including the Major Histocompatibility Complex (MHC) and the functional regulatory landscape of the Fibroblast Growth Factor 8 (Axfgf8) region. The axolotl serves as a primary model for studying successful regeneration.

Supported by ORIP (R24 OD010435, P40 OD019794).

 

Cytomegaloviral Determinants of CD8+ T Cell Programming and RhCMV/SIV Vaccine Efficacy

Malouli et al., Science Immunology. 2021 Mar 25; 6(57):eabg5413

Cytomegalovirus (CMV)-based vaccine vectors were developed to leverage the ability of CMVs to elicit sustained CD4+ and CD8+ T cell responses with broad tissue distribution. The 68-1 rhesus cytomegalovirus (RhCMV) vectors that express simian immunodeficiency virus (SIV) inserts induce major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+ T cell responses. The contribution of this unconventional MHC restriction to RhCMV/SIV vaccine efficacy are poorly understood. Researchers demonstrated that these responses result from genetic rearrangements in 68-1 RhCMV that disrupt the function of eight immunomodulatory proteins encoded by the virus. Repair of each of these genes with either RhCMV or human CMV counterparts shifted responses to MHC-Ia-restricted, or MHC-Ia- and MHC-II-restricted, CD8 T cell responses, but repairing the RhCMV genes did not protect against SIV. These findings suggest that MHC-E-restricted CD8+ T cell responses may be critical to protection against SIV. ORIP grant support: U42 OD023038 and P51 OD011092.

 

Sensitive Tracking of Circulating Viral RNA Through All Stages of SARS-CoV-2 Infection

Huang et al., Journal of Clinical Investigation. 2021 Apr 1; 131(7):e146031

Circulating SARS-CoV-2 RNA could represent a more reliable indicator of infection than nasal RNA, but quantitative reverse transcription PCR (RT-qPCR) lacks diagnostic sensitivity for blood samples. Researchers developed a CRISPR-amplified, blood-based COVID-19 (CRISPR-ABC) assay to detect SARSCoV-2 in plasma. They evaluated the assay using samples from SARS-CoV-2-infected African green monkeys and rhesus macaques as well as from COVID-19 patients. CRISPR-ABC consistently detected viral RNA in the plasma of the experimentally infected primates from 1 to 28 days after infection. The increases in plasma SARS-CoV-2 RNA in the monkeys preceded rectal swab viral RNA increases. In the patient cohort, the new assay demonstrated 91.2% sensitivity and 99.2% specificity versus RT-qPCR nasopharyngeal testing, and it also detected COVID-19 cases with transient or negative nasal swab RT-qPCR results. These findings suggest that detection of SARS-CoV-2 RNA in blood by CRISPR-augmented RT-PCR could improve COVID-19 diagnosis, facilitate the evaluation of SARS-CoV-2 infection clearance, and help predict the severity of infection. ORIP grant support: P51 OD011104.

 

Publications Archive

2021

 

 

Polyfunctional Tier 2–Neutralizing Antibodies Cloned Following HIV-1 Env Macaque Immunization Mirror Native Antibodies in a Human Donor

Spencer, David A. et al., Journal of Immunology. 2021 Mar; 206(5):999-1012.

https://doi.org/10.4049/jimmunol.2001082

HIV vaccine efforts are limited by viral strain diversity and the shielding of neutralization epitopes on the viral envelope, yet isolation of broadly neutralizing antibodies from infected individuals suggests the potential for eliciting protective antibodies through vaccination. Researchers cloned 58 monoclonal antibodies (mAbs) from a rhesus monkey immunized with envelope glycoprotein immunogens from an HIV-1 clade C–infected volunteer. Twenty mAbs exhibited some neutralizing activity. Cloned mAbs targeting the V3 region and CD4 binding site were capable of tier 2 (i.e., moderate) neutralization. This study demonstrates partial recapitulation of the human donor’s humoral immune response through nonhuman primate vaccination.

Supported by ORIP (P51OD011092) and NIAID

 

Autologous Transplant Therapy Alleviates Motor and Depressive Behaviors in Parkinsonian Monkeys

Tao, Yunlong et al., Nature Medicine, 1 March 2021.

https://www.nature.com/articles/s41591-021-01257-1

Generation of induced pluripotent stem cells (iPSCs) enables standardized of dopamine (DA) neurons for autologous transplantation therapy to improve motor functions in Parkinson disease (PD). Adult male rhesus PD monkeys receiving autologous, but not allogenic, transplantation exhibited recovery from motor and depressive signs of PD over a 2-year period without immunosuppressive therapy. Mathematical modeling showed correlations between surviving DA neurons with PET signal intensity and behavior recovery regardless of autologous or allogeneic transplant, suggesting a predictive power of PET and motor behaviors for surviving DA neuron number. The results demonstrate favorable efficacy of the autologous transplant approach to treat PD. Supported by ORIP (P51OD011106) NINDS, and NICHD

 

Trim-Away Mediated Knock Down Uncovers a New Function for Lbh During Gastrulation of Xenopus laevis

Weir, Emma et al. Dev Biol. 2021 Feb; 470:74-83 (PMC7855437)

https://pubmed.ncbi.nlm.nih.gov/33159936/

The protein Lbh was identified as necessary for cranial neural crest cell migration in Xenopus. To investigate its role in embryonic events, the authors employed the technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody. Early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increase in mesodermal cell migration and decrease in endodermal cell cohesion. The technique is also effective on a second abundant maternal Protein Kinase C And Casein Kinase Substrate In Neurons 2.

Supported by ORIP (R24 OD021485), NIDCR

 

Immunogenic BNT162b Vaccines Protect Rhesus Macaques from SARS-CoV-2

Vogel et al., Nature. 2021 Feb 1. Online ahead of print

The preclinical development of two BNT162b vaccine candidates, which contain lipid-nanoparticle formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens, was performed in rhesus macaques at the Southwest National Primate Research Center (SNPRC). BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain. BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation. Prime/boost vaccination of rhesus macaques with BNT162b candidates elicits SARS-CoV-2 neutralizing antibody titers that are 8.2 to 18.2 times that of a SARS-CoV-2 convalescent human serum panel. The vaccine candidates protected macaques from SARS-CoV-2 challenge, with BNT162b2 protecting the lower respiratory tract from the presence of viral RNA and with no evidence of disease enhancement. The BNT162b2 vaccine recently received emergency use authorization from FDA and is being administered within the United States. The SNPRC is supported by ORIP P51OD011103.

 

Modified Vaccinia Ankara Vector-Based Vaccine Protects Macaques from SARS-CoV-2 Infection, Immune Pathology and Dysfunction in the Lung

Routhu, Nanda Kishore et al., Immunity. 2021 Feb; Epub ahead of print.

https://doi.org/10.1016/j.immuni.2021.02.001

Any SARS-CoV-2 vaccine may have limitations such as need for ultracold storage, poor induction of CD8+ T cell response, or lack of cross-reactivity with emerging strains. Thus, multiple vaccines may be needed to bring COVID-19 under control. Using rhesus macaques, researchers showed that a modified vaccinia Ankara (MVA) vector-based SARS-CoV-2 vaccine expressing prefusion-stabilized spike protein induced strong neutralizing antibody and CD8+ T cell responses. The vaccine protected macaques from SARS-CoV-2 infection as well as infection-induced inflammation and B cell abnormalities in the lung. These results are promising considering the excellent safety and performance of MVA vector-based vaccines for other pathogens.

Supported by ORIP (P51OD011132, S10OD026799) and NIAID

 

Lung Expression of Human Angiotensin-Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection

Han, Kun et al., American Journal of Respiratory Cell and Molecular Biology. 2021 Jan; 64(1):79-88.

https://doi.org/10.1165/rcmb.2020-0354OC

A rapidly deployable mouse model that recapitulates a disease caused by a novel pathogen would be a valuable research tool during a pandemic. Researchers were able to produce C57BL/6J mice with lung expression of human angiotensin-converting enzyme 2 (hACE2), the receptor for SARS-CoV-2. They did so by oropharyngeal delivery of a recombinant human adenovirus type 5 expressing hACE2. The transduced mice were then infected with SARS-CoV-2. Thereafter, the mice developed interstitial pneumonia with perivascular inflammation, exhibited higher viral load in lungs compared to controls, and displayed a gene expression phenotype resembling the clinical response in lungs of humans with COVID-19.

Supported by ORIP (P51OD011104, R21OD024931), NHLBI, and NIGMS

 

SARS-CoV-2 Induces Robust Germinal Center CD4 T Follicular Helper Cell Responses in Rhesus Macaques

Lakshmanappa, Yashavanth Shaan et al., Nature Communications. 22 January 2021, Article 541. https://www.nature.com/articles/s41467-020-20642-x

SARS-CoV-2 infection in both sexes of rhesus macaques, either infused with convalescent plasma, normal plasma, or receiving no infusion, resulted in transient accumulation of pro-inflammatory monocytes and proliferating CD4 T follicular helper (Tfh) cells, which are critical for persistent antibody responses. CD4 helper cell responses skewed predominantly toward a Th1 response in blood, lung, and lymph nodes. This skewing is important to note, as weak interferon responses observed in COVID patients could hamper effective antiviral antibody and CD8 T-cell responses. Collectively, the data show induction of GC responses in a rhesus model of mild COVID-19.

Supported by ORIP (P51OD011107 and P40OD010976) and NIAID

 

Myelin‐specific T Cells in Animals with Japanese Macaque Encephalomyelitis

Govindan, Aparna N. et al., Wiley Online Library, first published 13 January 2021, Vol. 8, Issue 2.

https://onlinelibrary.wiley.com/doi/10.1002/acn3.51303

Investigators characterized the CD4+ and CD8+ T cells in demyelinating Japanese macaque encephalomyelitis (JME) lesions in age‐ and sex‐matched macaques and discovered differences in expression of myelin antigen sequences in the T cell. Mapping myelin epitopes revealed a heterogeneity in T cell responses among JME animals, which are associated with a proinflammatory pathogenic role in multiple sclerosis (MS). These findings draw further parallels between JME and MS and support the hypothesis that JME and possibly MS are triggered by mechanisms involving myelin damage and not myelin epitope mimicry.

Supported by ORIP (P51OD011092) and NINDS

 

Antibody-Mediated Depletion of Viral Reservoirs is Limited in SIV-Infected Macaques Treated Early With Antiretroviral Therapy

Swanstrom, Adrienne E. et al., Journal of Clinical Investigation. 2021 Jan; Epub ahead of print.

https://doi.org/10.1172/JCI142421

Virus-specific strategies to target the latent HIV reservoir in individuals on combination antiretroviral therapy (cART) have been limited by inefficient induction of viral protein expression. Researchers used rhesus macaques to investigate an antibody-mediated reservoir targeting strategy, targeting the CD4 molecule rather than a viral protein, to deplete potential viral target cells irrespective of infection status. Despite profound CD4+ T cell depletion in blood and lymph nodes, time to viral rebound following cART cessation was not delayed in anti-CD4 treated animals compared with controls, likely due to the limited antibody-mediated cell depletion that occurred in rectal tissue and lymphoid follicles.

Supported by ORIP (R24OD010976), NCI, and NIAID

 

A Modular Master Regulator Landscape Controls Cancer Transcriptional Identity

Paul et al., Cell. 2021 Jan 21;184(2):334-351.e20

The mechanisms linking genomic alterations to transcriptional identity of cancer cells remain elusive. Integrative genomic analysis, using a network-based approach, identified 407 master regulator (MR) proteins responsible for canalizing the genetics of individual samples from 20 cohorts in The Cancer Genome Atlas into 112 transcriptionally distinct tumor subtypes. MR proteins could be further organized into 24 pan-cancer, MR block modules (MRBs), each regulating key cancer hallmarks and predictive of patient outcome in multiple cohorts. Of all somatic alterations detected in each individual sample, >50% were predicted to induce aberrant MR activity, yielding insight into mechanisms linking tumor genetics and transcriptional identity and establishing non-oncogene dependencies. Genetic and pharmacological validation assays confirmed the predicted effect of upstream mutations and MR activity on downstream cellular identity and phenotype. Thus, co-analysis of mutational and gene expression profiles identified elusive subtypes and provided testable hypothesis for mechanisms mediating the effect of genetic alterations. Supported by ORIP (S10OD012351 and S10OD021764), NCI, and other sources.

 

Increased Proviral DNA in Circulating Cells Correlates with Plasma Viral Rebound in SIV-Infected Rhesus Macaques after Antiretroviral Therapy Interruption

Ziani et al., J Virol. 2021 Jan 6;JVI.02064-20

Investigators longitudinally tracked dynamic decay of cell-associated viral RNA/DNA in systemic and lymphoid tissues in SIV-infected rhesus macaques on prolonged combined antiretroviral therapy (cART) to evaluate predictors of viral rebound after treatment cessation. Suppressive cART substantially reduced plasma SIV RNA, cell-associated unspliced, and multiply spliced SIV RNA to undetectable levels, yet viral DNA remained detectable in systemic tissues and lymphoid compartments throughout cART. A rapid increase of integrated proviral DNA in peripheral mononuclear cells was detected once cART was withdrawn, accompanied by the emergence of detectable plasma viral load. The increase of peripheral proviral DNA post cART interruption correlated with the emergence and degree of viral rebound. These results suggest that measuring total viral DNA in SIV infection may be a relatively simple surrogate marker of reservoir size, and may predict viral rebound after treatment interruption, and inform treatment strategies. Supported by ORIP (P51OD011104), NIAID and NICHD.

 

Thresholds for Post-Rebound SHIV Control after CCR5 Gene-Edited Autologous Hematopoietic Cell Transplantation

Cardozo-Ojeda et al., Elife. 2021 Jan 12;10:e57646

Investigators developed a mathematical model to project the minimum threshold of C-C chemokine receptor type 5 (CCR5) gene-edited cells necessary for a functional cure from HIV. This was based on blood T cell reconstitution and plasma simian-HIV (SHIV) dynamics from SHIV-1157ipd3N4-infected juvenile pig-tailed macaques that underwent autologous transplantation with CCR5 gene editing. The model predicts that viral control can be obtained following analytical treatment interruption (ATI) when: (1) transplanted hematopoietic stem and progenitor cells (HSPCs) are at least fivefold higher than residual endogenous HSPCs after total body irradiation and (2) the fraction of protected HSPCs in the transplant achieves a threshold (76–94%) sufficient to overcome transplantation-dependent loss of SHIV immunity. Under these conditions, if ATI is withheld until transplanted gene-modified cells engraft and reconstitute to a steady state, spontaneous viral control is projected to occur. Supported by ORIP (P51OD010425), NCATS and NIAID.

 

Severely Ill COVID-19 Patients Display Impaired Exhaustion Features in SARS-CoV-2-Reactive CD8+ T Cells

Kusnadi1 et al., Sci Immunol. 2021 Jan 21;6(55):eabe4782

How CD8+ T cells respond to SARS-CoV-2 infection is not fully known. Investigators reported on the single-cell transcriptomes of >80,000 virus-reactive CD8+ T cells, obtained using a modified Antigen-Reactive T cell Enrichment assay, from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patient cells were segregated into two groups based on whether the dominant CD8+ T cell response to SARS-CoV-2 was “exhausted” or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed less cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the dominant non-exhausted subset from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival Nuclear Factor κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8+ T cell memory responses in patients with severe COVID-19 illness. Overall, this single-cell analysis revealed substantial diversity in the nature of CD8+ T cells responding to SARS-CoV-2. Supported by ORIP (S10RR027366 and S10OD025052), NIAID, NHLBI, NIGMS, and other sources.

 

Endogenous Zebrafish Neural Cre Drivers Generated by CRISPR/Cas9 Short Homology Directed Targeted Integration

Almeida, M.P. et al., Scientific Reports 2021 January 18;11(1):1732 (PMC7813866)

https://www.nature.com/articles/s41598-021-81239-y

Almeida et al. previously reported precision targeted integration of reporter DNA in zebrafish using CRISPR/Cas9. Here, they isolated zebrafish Cre recombinase drivers. A 2A-Cre recombinase transgene with 48 bp homology arms was targeted into proneural genes ascl1b, olig2 and neurod1. They observed high rates of germline transmission from 10 to 100% (10% olig2; 20% neurod1; 100% ascl1b). The lines Tg(ascl1b-2A-Cre)is75, Tg(olig2-2A-Cre)is76, and Tg(neurod1-2A-Cre)is77 expressed functional Cre recombinase in the cell populations. Results demonstrate Cre recombinase expression is driven by the native promoter and regulatory elements of targeted genes. This approach is a cost-effective method to generate cell type specific zebrafish Cre and CreERT2 drivers.

Supported by ORIP (R24 OD020166).

 

Deploying MMEJ using MENdel in Precision Gene Editing Applications for Gene Therapy and Functional Genomics

Martínez-Gálvez G. et al. Nucleic Acids Research. 2021 January 11;49(1):67-78 (PMC7797032)

https://academic.oup.com/nar/article/49/1/67/6030233

Gene-editing experiments commonly elicit the error-prone non-homologous end joining for DNA double-strand break (DSB) repair. Martinez-Galvez et al. compared three DSB repair prediction algorithms - MENTHU, inDelphi, and Lindel. MENTHU correctly identified 46% of all PreMAs available, a ∼2- and ∼60-fold sensitivity increase compared to inDelphi and Lindel, respectively.  The investigators report the new algorithm MENdel, a combination of MENTHU and Lindel, that achieves the most predictive coverage of homogeneous out-of-frame mutations. They suggest that the use of MENdel helps researchers use MMEJ at scale for reverse genetics screenings to be viable for nearly all loss-of-function based gene editing therapeutic applications.

Supported by ORIP (R24 OD020166), NIGMS.

2020

 

The Immune Landscape in Tuberculosis Reveals Populations Linked to Disease and Latency

Esaulova et al., Cell Host Microbe. 2020 Dec 16;S1931-3128(20)30635-1

Mycobacterium tuberculosis infection of adult rhesus macaques (RMs), predominantly males (81%), recapitulates both latent (LTBI) and active pulmonary TB (PTB) observed in humans. The immune characterization in lungs of RMs with PTB exhibited an influx of plasmacytoid dendritic cells, an interferon-responsive macrophage population, and activated T cell responses. In contrast, a CD27+ natural killer (NK) cell subset accumulated in the lungs of RMs with LTBI. This NK cell population was also detected in the circulation of humans with LTBI. This characterization of lung immune cells enhances our understanding of TB immunopathogenesis and provides potential targets for therapies and vaccines for TB control. Supported by ORIP (P51OD011104 and P51OD011133), NHLBI and NIAID.

 

A Frog with Three Sex Chromosomes that Co-Mingle Together in Nature: Xenopus tropicalis Has a Degenerate W and a Y that Evolved from a Z Chromosome

Furman, Benjamin L. S., et al. PLoS Genet. 2020 Nov 9; 16(11):e1009121 (PMC7652241)

https://pubmed.ncbi.nlm.nih.gov/33166278/

Genetic systems governing sexual differentiation vary among species. Furman et al. investigated a frog with three sex chromosomes, the Western clawed frog, Xenopus tropicalis. They demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a similar genomic location as a previously known female-determining factor on the W chromosome. Their findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes and demonstrate that several characteristics of old and established sex chromosomes can arise well before they become cytogenetically distinguished.

Supported by ORIP (P40 OD010997), NICHD

 

3-D Printed Customizable Vitrification Devices for Preservation of Genetic Resources of Aquatic Species

Tiersch, Connor J., et al. Aquac Eng. 2020 Aug; 90:102097 (PMC7434064)

https://www.sciencedirect.com/science/article/pii/S0144860920300406

Sperm vitrification as an alternative approach to conventional cryopreservation allows quick and low-cost sample preservation and is suitable for small-bodied aquatic species with miniscule testis, fieldwork at remote locations, and small-scale freezing for research purposes. Tiersch et al. report the developing of operational prototypes of 3-dimensional (3-D) printed vitrification devices.  This study demonstrated the feasibility of developing standardized low-cost devices fabricated by 3-D printing with functions including vitrification, volume control, labeling, protection, and storage. These prototypes can be further developed to assist development of germplasm repositories to protect the genetic resources of aquatic species by breeders, hatcheries, aquariums, and researchers.

Supported by ORIP (R24 OD010441)

 

Sequence Diversity Analyses of an Improved Rhesus Macaque Genome Enhance its Biomedical Utility

Warren et al., Science. 18 December 2020: Vol. 370, Issue 6523, eabc6617

https://science.sciencemag.org/content/370/6523/eabc6617

Investigators sequenced and assembled an Indian-origin female rhesus macaque (RM) genome using a multiplatform genomics approach that included long-read sequencing, extensive manual curation, and experimental validation to generate a new comprehensive annotated reference genome. As a result, 99.7% of the gaps in the earlier draft genome are now closed, and more than 99% of the genes are represented. Whole-genome sequencing of 853 RMs of both sexes identified 85.7 million single-nucleotide variants and 10.5 million indel variants, including potentially damaging variants in genes associated with human autism and developmental delay. The improved assembly of segmental duplications, new lineage-specific genes and expanded gene families provide a framework for developing noninvasive NHP models of human disease as well as studies of genetic variation and phenotypic consequences. Supported by ORIP (P51OD011106, P51OD011107, P51OD011132, P51OD011104, U42OD024282, U42OD010568, R24OD011173, R24OD021324, and R24OD010962), NHGRI, NIMH, NHLBI, and NIGMS.

 

Biological Activities of a New Crotamine-like Peptide from Crotalus Oreganus Helleri on C2C12 and CHO Cell Lines, and Ultrastructural Changes on Motor Endplate and Striated Muscle

Salazar et al. Toxicon. 2020 December;188:95-107 (PMC7720416)

https://pubmed.ncbi.nlm.nih.gov/33065200/

Crotamine and crotamine-like peptides are non-enzymatic polypeptides found in high concentration in the Crotalus genus venom. Helleramine was isolated and purified from the venom of the rattlesnake, Crotalus oreganus helleri. Purified helleramine increased intracellular Ca2+ in Chinese Hamster Ovary (CHO) cell line, inhibited cell viability of C2C12 (immortalized skeletal myoblast) and promoted early apoptosis and cell death. Skeletal muscle harvested from mice 24 h after helleramine injection showed contracted myofibrils and profound vacuolization, with loss of plasmatic and basal membrane integrity. The effects of helleramine provide evidence of myotoxic activities of crotamine-like peptides and their possible role in crotalid envenoming.

Supported by ORIP (P40 OD010960).

Responses to Acute Infection with SARS-CoV-2 in the Lungs of Rhesus Macaques, Baboons and Marmosets
Singh, Dhiraj K. et al., Nature Microbiology, 18 December 2020 
https://www.nature.com/articles/s41564-020-00841-4
Investigators compared acute SARS-CoV-2 infection in young and old rhesus macaques and baboons. Macaques had clinical signs of viral infection, mild to moderate pneumonitis and extra-pulmonary pathologies; both age groups recovered within two weeks. Baboons had prolonged viral RNA shedding and more lung inflammation compared with macaques; inflammation in bronchoalveolar lavage was increased in old versus young baboons. Macaques developed T-cell memory responses and bystander cytokine production. Old macaques had lower titers of SARS-CoV-2-specific IgG antibody levels compared with young macaques. The results indicate macaques and baboons experience acute respiratory distress that recapitulates the progression of COVID-19 in humans. 
Supported by ORIP (P51OD111033 and U42OD010442) and NIAID.

 

Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4+ T Cells in COVID-19

Meckiff et.al., Cell. 2020 Nov 25;183(5):1340-1353.e16.  

It is not clear why COVID-19 is deadly in some people and mild in others. To understand the underlying mechanism, investigators studied the contribution of CD4+ T cells in immune responses to SARS-CoV-2 infection. They analyzed single-cell transcriptomic data of >100,000 viral antigen-reactive CD4+ T cells from 40 COVID-19 patients. In hospitalized patients compared to non-hospitalized patients, they found increased proportions of cytotoxic follicular helper cells (TFH) and cytotoxic T helper (TH) cells responding to SARS-CoV-2 and reduced proportion of SARS-CoV-2-reactive regulatory T cells (TREG). Importantly, in hospitalized COVID-19 patients, a strong cytotoxic TFH response was observed early in the illness, which correlated negatively with antibody levels to SARS-CoV-2 spike protein. Polyfunctional TH1 and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, these analyses provided insights into the gene expression patterns of SARS-CoV-2-reactive CD4+ T cells in distinct disease severities. Supported by ORIP  (S10RR027366 and S10OD025052), NIAID, NHLBI, NIGMS and other sources.

 

Infant Isoflurane Exposure Affects Social Behaviours, but Does Not Impair Specific Cognitive Domains in Juvenile Non-human Primates
Neudecker, Viola et al., British Journal of Anaesthesia 14 November 2020
https://www.sciencedirect.com/science/article/pii/S0007091220308503
Researchers investigated the impact of extended (5 hours) isoflurane anesthetic exposure (1-3 exposures) of rhesus macaque (RM) infants of both sexes on cognitive testing and behavioral assessments. Cognitive function did not differ among groups; however, compared to controls, RMs exposed three times during infancy exhibited less close social behavior. One isoflurane exposure resulted in increased anxiety-related behaviors and more inhibition towards novel objects. These findings are consistent with behavioral alterations observed in social settings of human clinical studies. 
Supported by ORIP (P51OD011092). 

 

Estrogen Acts Through Estrogen Receptor 2b to Regulate Hepatobiliary Fate During Vertebrate Development
Chaturantabut, Saireudee et al. Hepatology. 2020 Nov;72(5):1786-1799
https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep.31184
During liver development, bipotent progenitor cells differentiate into hepatocytes and biliary epithelial cells to ensure a functional liver. The developmental cues controlling the differentiation of committed progenitors into these cell types are not completely understood. These authors report an essential role for estrogenic regulation in vertebrate liver development to affect hepatobiliary fate decisions. The studies identify17β-estradiol (E2), nuclear estrogen receptor 2b (esr2b), and downstream bone morphogenetic protein (BMP) activity as important regulators of hepatobiliary fate decisions during vertebrate liver development. These results have significant implications for liver development in infants exposed to abnormal estrogen levels or estrogenic compounds during pregnancy.
Supported by ORIP (R24 OD017870), NIDDK.

 

Lipocalin-2 Is an Anorexigenic Signal in Primates

Petropoulou, Peristera-Ioanna et al., eLife. 2020 Nov; 9:e58949.

https://doi.org/10.7554/eLife.58949

The hormone Lipocalin-2 (LCN2) suppresses food intake in mice. Researchers demonstrated that LCN2 increases after a meal and reduces hunger in people with normal weight or overweight, but not in obese individuals. The researchers also showed that LCN2 crosses the blood-brain barrier and binds to the hypothalamus in vervet monkeys. LCN2 was found to bind to the hypothalamus in human, baboon, and rhesus macaque brain sections. When injected into vervets, LCN2 suppressed food intake and lowered body weight without toxic effects in short-term experiments. These findings lay the groundwork to investigate whether LCN2 might be a useful treatment for obesity.

Supported by ORIP (P40OD010965), NCATS, NIDDK, NIA, NHLBI, and National Institute of Food and Agriculture.

 

Antiretroviral Therapy Does Not Reduce Tuberculosis Reactivation in a Tuberculosis-HIV Coinfection Model

Ganatra, Shashank R. et al., Journal of Clinical Investigation. 2020 October;130(10):5171-5179

https://www.jci.org/articles/view/136502

Despite treatment of HIV with antiretroviral therapy (ART), the risk of tuberculosis (TB) reactivation is higher in HIV-infected than HIV-uninfected persons. Researchers used Mycobacterium tuberculosis/SIV-coinfected rhesus macaques to model the impact of ART on TB reactivation due to HIV-induced immunosuppression. ART significantly reduced viral loads and increased CD4+ T-cell counts in blood, spleen, and bronchoalveolar lavage samples, but it did not reduce the risk of SIV-induced TB reactivation during the early phase of treatment. This study offers a translational model for the investigation of TB/SIV coinfection and the evaluation of treatment regimens to prevent TB reactivation in HIV-infected individuals.

Supported by ORIP (P51OD011133, P51OD011132) and NIAID.

 

Intra-Strain Genetic Variation of Platyfish (Xiphophorus maculatus) Strains Determines Tumorigenic Trajectory
Lu, Yuan et al., Frontiers in Genetics 2020 Oct 6;11:562594
https://www.frontiersin.org/articles/10.3389/fgene.2020.562594/full
Xiphophorus interspecies hybrids represent a valuable model system to study heritable tumorigenesis. Although the ancestors of the two X. maculatus parental lines, Jp163 A and Jp163 B, were siblings produced by the same mother, backcross interspecies hybrid progeny between X. hellerii and X. maculatus Jp163 A develop spontaneous melanoma initiating at the dorsal fin due to a regulator encoded by the X. maculatus genome; the backcross hybrid progeny with X. hellerii or X. couchianus and Jp163 B exhibit melanoma on their flanks. Comparative genomic analyses revealed genetic differences are associated with pathways highlighting fundamental cellular functions. Disruption of these baselines may give rise to spontaneous or inducible tumorigenesis.
Supported by ORIP (R24 OD-011120), NCI, NIGMS.

 

Induction and Characterization of Pancreatic Cancer in a Transgenic Pig Model
Boas, F. Edward et al., PLoS One. 2020 Sep 21;15(9):e0239391
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239391
Preclinical testing of new therapies for pancreatic cancer has been challenging due to lack of a suitable large animal model. Pigs, however, have similar physiology and immune response to humans. Boas et al report the development of a porcine model of pancreatic cancer.  H&E and immunohistochemical stains revealed undifferentiated carcinomas, like those of human pancreatobiliary systems. In several pigs, angiographies revealed that the artery supplying the pancreatic tumor could be catheterized using a 2.4 F microcatheter. In summary, pancreatic cancer can be induced in a transgenic pig, and intra-arterial procedures using catheters designed for human interventions were feasible in this model. 
Supported by ORIP (U42 OD011140), NCI.

 

Epidemiological and Molecular Characterization of a Novel Adenovirus of Squirrel Monkeys after Fatal Infection during Immunosuppression

Rogers, Donna L. et al. Microb Genom. 2020 Sep; 6(9):mgen000395 (PMC7643968)

https://pubmed.ncbi.nlm.nih.gov/32614763/

Adenoviruses frequently cause upper respiratory tract infections often causing disseminated disease in immunosuppressed patients. A novel adenovirus was identified, squirrel monkey adenovirus 1 (SqMAdV-1), as the cause of a fatal infection in an immunocompromised squirrel monkey (Saimiri boliviensis). A nucleotide polymorphism at the stop codon of the DNA polymerase gene results in a 126 amino acid extension at the carboxy terminus. A single adenovirus variant, SqMAdV-3, has similarity to tufted capuchin (Sapajus apella) adenoviruses. The largest group of adenovirus variants detected, SqMAdV-2.0-2.16, has high similarity (93-99 %) to the TMAdV, suggesting that squirrel monkeys may be the natural host of the TMAdV.

Supported by ORIP (P40 OD010938, R24 OD018553), NIAID

 

Germline Transmission of Donor, Maternal and Paternal mtDNA in Primates
Ma, Hong et al, 2020;
https://academic.oup.com/humrep/advance-article/doi/10.1093/humrep/deaa308/6025644#218455297 
Mitochondrial gene mutations contribute to incurable human disorders. The possibility of using mitochondrial replacement therapy (MRT) to prevent transmission of pathogenic mitochondrial (mt)DNA was explored in rhesus macaques. Development of spindle MRT transfer in oocytes in 5 female rhesus macaques resulted in healthy and fertile offspring.  These results demonstrate that MRT is compatible with normal postnatal development including overall health and reproductive fitness in nonhuman primates with no detected adverse effects. Additional research is needed to more fully explore the use of MRT to prevent disorders as this study had a limited number of animals with only one female offspring. 
Supported by ORIP (P51OD0092) and NIA.

Last updated: 06-10-2021