Selected Grantee Publications
- Clear All
- 100 results found
- Neurological
Establishing the Hybrid Rat Diversity Program: A Resource for Dissecting Complex Traits
Dwinell et al., Mammalian Genome. 2025.
https://pubmed.ncbi.nlm.nih.gov/39907792
Rat models have been extensively used for studying human complex disease mechanisms, behavioral phenotypes, and environmental factors and for discovering and developing drugs. Systems genetics approaches have been used to study the effects of both genetic variation and environmental factors. This approach recognizes the complexity of common disorders and uses intermediate phenotypes to find relationships between genetic variation and clinical traits. This article describes the Hybrid Rat Diversity Program (HDRP) at the Medical College of Wisconsin, which involves 96 inbred rat strains and aims to provide a renewable and reusable resource in terms of the HRDP panel of inbred rat strains, the genomic data derived from the HRDP strains, and banked resources available for additional studies. Supported by ORIP (R24OD024617) and NHLBI.
Preclinical Use of a Clinically-Relevant scAAV9/SUMF1 Vector for the Treatment of Multiple Sulfatase Deficiency
Presa et al., Communications Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39870870
This study evaluates a gene therapy strategy using an adeno-associated virus (AAV)/SUMF1 vector to treat multiple sulfatase deficiency (MSD), a rare and fatal lysosomal storage disorder caused by mutations in the SUMF1 gene. Researchers delivered the functional gene to male and female Sumf1 knockout mice either neonatally or after symptom onset. Neonatal treatment via cerebral spinal fluid extended survival up to 1 year, alleviated MSD symptoms, and restored normal behavior and cardiac and visual function without toxicity. Treated tissues showed widespread SUMF1 expression and enzymatic activity. These findings support the translational potential of this gene replacement therapy for clinical use in MSD patients. Supported by ORIP (U42OD010921, U54OD020351, U54OD030187) and NCI.
Peripherally Mediated Opioid Combination Therapy in Mouse and Pig
Peterson et al., The Journal of Pain. 2025.
https://pubmed.ncbi.nlm.nih.gov/39542192
This study evaluates novel opioid combinations for pain relief with reduced side effects. Researchers investigated loperamide (a μ-opioid agonist) with either oxymorphindole or N‑benzyl-oxymorphindole—both δ-opioid receptor partial agonists—in mice (male and female) and pigs (male). These combinations produced synergistic analgesia across species without causing adverse effects or respiratory depression. The therapies significantly reduced hypersensitivity in post-injury models, outperforming morphine alone. These findings suggest that peripherally acting opioid combinations can offer effective, safer alternatives for pain management, potentially lowering opioid misuse and side effects. This approach could improve clinical strategies for treating chronic and acute pain with limited central opioid exposure. Supported by ORIP (T32OD010993), NHLBI, and NIDA.
Suppression of Viral Rebound by a Rev-Dependent Lentiviral Particle in SIV-Infected Rhesus Macaques
Hetrick et al., Gene Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39025983/
Viral reservoirs are a current major barrier that prevents an effective cure for patients with HIV. Antiretroviral therapy (ART) effectively suppresses viral replication, but ART cessation leads to viral rebound due to the presence of viral reservoirs. Researchers conducted in vivo testing of simian immunodeficiency virus (SIV) Rev-dependent vectors in SIVmac239-infected male and female Indian rhesus macaques, 3–6 years of age, to target viral reservoirs. Treatment with the SIV Rev-dependent vector reduced viral rebound and produced neutralizing antibodies following ART cessation. These results indicate the potential to self-control plasma viremia through a neutralizing antibody-based mechanism elicited by administration of Rev-dependent vectors. This research could guide future studies focused on investigating multiple vector injections and quantifying cell-mediated immune responses. Supported by ORIP (P51OD011104, P40OD028116), NIAID, and NIMH.
Spatiotemporal Characterization of Cyclooxygenase Pathway Enzymes During Vertebrate Embryonic Development
Leathers et al., Developmental Biology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39581452/
The cyclooxygenase (COX) pathway plays a fundamental role in embryonic development. Disruptions of the COX pathway during pregnancy cause developmental anomalies, including craniofacial clefts, impaired gut innervation, and neural tube defects in the embryo. Researchers used Gallus gallus embryos to study the expression of COX pathway enzymes during neurulation. COX-1 protein expression was upregulated in cells undergoing mitosis, whereas COX-2 protein expression was ubiquitous. This study provides spatiotemporal expression data of COX pathway enzymes at key embryonic development stages in G. gallus and guides future studies focused on defining the role of these enzymes during embryonic development. Supported by ORIP (T35OD010956), NEI, NIDCR, and NIGMS.
Plural Molecular and Cellular Mechanisms of Pore Domain KCNQ2 Encephalopathy
Abreo et al., eLife. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11703504
This study investigates the cellular and molecular mechanisms underlying KCNQ2 encephalopathy, a severe type of early-onset epilepsy caused by mutations in the KCNQ2 gene. Researchers describe a case study of a child with a specific KCNQ2 gene mutation, G256W, and found that it disrupts normal brain activity, leading to seizures and developmental impairments. Male and female Kcnq2G256W/+ mice have reduced KCNQ2 protein levels, epilepsy, brain hyperactivity, and premature deaths. As seen in the patient study, ezogabine treatment rescued seizures in mice, suggesting a potential treatment avenue. These findings provide important insights into KCNQ2-related epilepsy and highlight possible therapeutic strategies. Supported by ORIP (U54OD020351, S10OD026804, U54OD030187), NCI, NHLBI, NICHD, NIGMS, NIMH, and NINDS.
A Switch from Glial to Neuronal Gene Expression Alterations in the Spinal Cord of SIV-Infected Macaques on Antiretroviral Therapy
Mulka et al., Journal of Neuroimmune Pharmacology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38862787/
Up to one-third of patients with HIV experience HIV-associated peripheral neuropathy, affecting sensory pathways in the spinal cord. Spinal cord sampling is limited in people with HIV. Researchers examined gene expression alterations in the spinal cords of simian immunodeficiency virus (SIV)-infected male pigtail macaques with and without antiretroviral therapy (ART), using RNA sequencing at key time points throughout infection. Results indicate a shift from glial cell-associated pathways to neuronal pathways in SIV-infected animals receiving ART. These findings suggest that neurons, rather than glia, are predominantly involved in ART-related neurotoxicity and offer new insights into therapeutic strategies for maintaining synaptic homeostasis. Supported by ORIP (U42OD013117, T32OD011089) and NINDS.
SIV-Specific Antibodies Protect Against Inflammasome-Driven Encephalitis in Untreated Macaques
Castell et al., Cell Reports. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11552693
Viral infections are the most common infectious cause of encephalitis, and simian immunodeficiency virus (SIV)–infected macaques are a well-established model for HIV. Researchers investigated the protective effects of SIV-specific antibodies against inflammation-driven encephalitis in using untreated, SIV-infected, male and female pigtail and rhesus macaques. Findings indicate that these antibodies reduce neuroinflammation and encephalitis, highlighting the importance of antibodies in controlling neuroimmune responses, especially in the absence of antiretroviral therapy. This study provides insight into immune-modulatory approaches to combating inflammation-driven encephalopathies. Supported by ORIP (U42OD013117, T32OD011089), NIDA, NHLBI, NIAID, NINDS, and NIMH.
Multimodal Analysis of Dysregulated Heme Metabolism, Hypoxic Signaling, and Stress Erythropoiesis in Down Syndrome
Donovan et al., Cell Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/39120971
Down syndrome (DS), a genetic condition caused by the presence of an extra copy of chromosome 21, is characterized by intellectual and developmental disability. Infants with DS often suffer from low oxygen saturation, and DS is associated with obstructive sleep apnea. Investigators assessed the role that hypoxia plays in driving health conditions that are comorbid with DS. A multiomic analysis showed that people with DS exhibit elevated heme metabolism and activated stress erythropoiesis, which are indicators of chronic hypoxia; these results were recapitulated in a mouse model for DS. This study identified hypoxia as a possible mechanism underlying several conditions that co-occur with DS, including congenital heart defects, seizure disorders, autoimmune disorders, several leukemias, and Alzheimer's disease. Supported by ORIP (R24OD035579), NCATS, NCI, and NIAID.
Mechanical Force of Uterine Occupation Enables Large Vesicle Extrusion From Proteostressed Maternal Neurons
Wang et al., eLife. 2024.
https://pubmed.ncbi.nlm.nih.gov/39255003
This study investigates how mechanical forces from uterine occupation influence large vesicle extrusion (exopher production) from proteostressed maternal neurons in Caenorhabditis elegans. Exophers, previously found to remove damaged cellular components, are poorly understood. Researchers demonstrate that mechanical stress significantly increases exopher release from touch receptor neurons (i.e., ALMR) during peak reproductive periods, coinciding with egg production. Genetic disruptions reducing reproductive activity suppress exopher extrusion, whereas interventions promoting egg retention enhance it. These findings reveal that reproductive and mechanical factors modulate neuronal stress responses, providing insight on how systemic physiological changes affect neuronal health and proteostasis, with broader implications for reproductive-neuronal interactions. Supported by ORIP (R24OD010943, P40OD010440), NIA, and NIGMS.