Skip to main content

HDAC Inhibitor Titration of Transcription and Axolotl Tail Regeneration

., . .

New patterns of gene expression are enacted and regulated during tissue regeneration. Romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Single-nuclei RNA sequencing at 6 HPA illustrated that key genes were altered by romidepsin in the same direction across multiple cell types.

Deep Learning Is Widely Applicable to Phenotyping Embryonic Development and Disease

., . .

Genome editing simplifies the generation of new animal models for congenital disorders. The authors illustrate how deep learning (U-Net) automates segmentation tasks in various imaging modalities. They demonstrate this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). They provide a library of pre-trained networks and detailed instructions for applying deep learning to datasets and demonstrate the versatility, precision, and scalability of deep neural network phenotyping on embryonic disease models.

Negative Inotropic Mechanisms of β-cardiotoxin in Cardiomyocytes by Depression of Myofilament ATPase Activity without Activation of the Classical β-Adrenergic Pathway

., . .

Beta-cardiotoxin (β-CTX) from the king cobra venom (Ophiophagus hannah) was previously proposed as a novel β-adrenergic blocker. However, the involvement of β-adrenergic signaling by this compound has never been elucidated. The objectives of this study were to investigate the underlying mechanisms of β-CTX as a β-blocker and its association with the β-adrenergic pathway. Healthy Sprague Dawley rats were used for cardiomyocytes isolation. In summary, the negative inotropic mechanism of β-CTX was discovered. β-CTX exhibits an atypical β-blocker mechanism.

CD4+ T Cells Are Dispensable for Induction of Broad Heterologous HIV Neutralizing Antibodies in Rhesus Macaques

., . .

Researchers investigated the humoral response in vaccinated rhesus macaques with CD4+ T cell depletion, using the VC10014 DNA protein co-immunization vaccine platform (with gp160 plasmids and gp140 trimeric proteins derived from an HIV-1 infected subject). Both CD4+-depleted and non-depleted animals developed comparable Tier 1 and 2 heterologous HIV-1 neutralizing plasma antibody titers. Thus, primates generate HIV neutralizing antibodies in the absence of robust CD4+ T cell help, which has important implications for vaccine development.

Genetic Basis For an Evolutionary Shift From Ancestral Preaxial to Postaxial Limb Polarity in Non-urodele Vertebrates

., . .

In most tetrapod vertebrates, limb skeletal progenitors condense with postaxial dominance. Posterior elements (ulna and fibula) appear prior to their anterior counterparts (radius and tibia), followed by digit-appearance order with continuing postaxial polarity. Recent fossil evidence suggests that preaxial polarity represents an ancestral rather than derived state. These authors report that 5'Hoxd (Hoxd11-d13) gene deletion in mouse is atavistic and uncovers an underlying preaxial polarity in mammalian limb formation.

Multiplexed Drug-Based Selection and Counterselection Genetic Manipulations in Drosophila

., . .

Many highly efficient methods exist which enable transgenic flies to contribute to diagnostics and therapeutics for human diseases. In this study, researchers describe a drug-based genetic platform with four selection and two counterselection markers, increasing transgenic efficiency by more than 10-fold compared to established methods in flies. Researchers also developed a plasmid library to adapt this technology to other model organisms.

Blocking α4β7 Integrin Delays Viral Rebound in SHIVSF162P3-Infected Macaques Treated with Anti-HIV Broadly Neutralizing Antibodies

., . .

To explore therapeutic potentials of combining anti-HIV broadly neutralizing antibodies (bNAbs) with α4β7 integrin blockade using the monoclonal antibody Rh-α4β7, investigators treated SHIVSF162P3-infected, viremic macaques with bNAbs only or bNAbs and Rh-α4β7. Treatment with bNAbs alone decreased viremia below 200 copies/ml in eight out of eight macaques, but seven of the monkeys rebounded within 3 weeks. In contrast, three of six macaques treated with both Rh-α4β7 and bNAbs maintained viremia below 200 copies/ml for 21 weeks, whereas three of those monkeys rebounded after 6 weeks.

TGF-β1 Signaling Is Essential for Tissue Regeneration in the Xenopus Tadpole Tail

., . .

Amphibians, such as Xenopus tropicalis, exhibit a remarkable capacity for tissue regeneration after traumatic injury. Nakamura et al. show that inhibition of TGF-β1 function prevents tail regeneration in Xenopus tropicalis tadpoles. CRISPR-mediated knock-out (KO) of tgfb1 retards tail regeneration; the phenotype of tgfb1 KO tadpoles can be rescued by injection of tgfb1 mRNA. Cell proliferation, critical for tissue regeneration, is downregulated in tgfb1 KO tadpoles; tgfb1 KO reduces the expression of phosphorylated Smad2/3 (pSmad2/3).

Factor XII Plays a Pathogenic Role in Organ Failure and Death in Baboons Challenged with Staphylococcus aureus

., . .

Activation of coagulation factor (F) XI promotes multiorgan failure in rodent models of sepsis and in a baboon model for lethal systemic inflammation induced by infusion of heat-inactivated Staphylococcus aureus. The authors used the anticoagulant FXII-neutralizing antibody 5C12 to verify the mechanistic role of FXII. Inhibition of FXII prevented fever, terminal hypotension, respiratory distress, and multiorgan failure. All animals receiving 5C12 had milder and transient clinical symptoms; untreated control animals suffered irreversible multiorgan failure.

Innate Immunity Stimulation via CpG Oligodeoxynucleotides Ameliorates Alzheimer’s Disease Pathology in Aged Squirrel Monkeys

., . .

Alzheimer's disease is the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The authors have shown in transgenic Alzheimer's disease mouse models that harnessing innate immunity via TLR9 agonist CpG oligodeoxynucleotides (ODNs) modulates age-related defects associated with immune cells and safely reduces amyloid plaques, oligomeric amyloid-β, tau pathology, and cerebral amyloid angiopathy (CAA). They used a nonhuman primate model for sporadic Alzheimer's disease pathology that develops extensive CAA-elderly squirrel monkeys.

Subscribe to P40