Selected Grantee Publications
- 608 results found
Autologous Transplant Therapy Alleviates Motor and Depressive Behaviors in Parkinsonian Monkeys
Tao et al., Nature Medicine. 2021.
https://www.nature.com/articles/s41591-021-01257-1
Generation of induced pluripotent stem cells (iPSCs) enables standardized of dopamine (DA) neurons for autologous transplantation therapy to improve motor functions in Parkinson disease (PD). Adult male rhesus PD monkeys receiving autologous, but not allogenic, transplantation exhibited recovery from motor and depressive signs of PD over a 2-year period without immunosuppressive therapy. Mathematical modeling showed correlations between surviving DA neurons with PET signal intensity and behavior recovery regardless of autologous or allogeneic transplant, suggesting a predictive power of PET and motor behaviors for surviving DA neuron number. The results demonstrate favorable efficacy of the autologous transplant approach to treat PD. Supported by ORIP (P51OD011106) NINDS, and NICHD.
Immune Variations Throughout the Course of Tuberculosis Treatment and its Relationship with Adrenal Hormone Changes in HIV-1 Patients Co-Infected with Mycobacterium tuberculosis
Vecchione et al., Tuberculosis. 2021.
https://doi.org/10.1016/j.tube.2020.102045
The probability of developing tuberculosis (TB) is 19 times higher in people infected with human immunodeficiency virus (HIV) compared to the general population. As host immune response defines the course of infection, researchers aimed to identify immuno-endocrine changes over six months of anti-TB chemotherapy in HIV+ people. Throughout the course of anti-TB/HIV treatment, plasma dehydroepiandrosterone (DHEA) and DHEA-sulfate levels increased while cortisol decreased. The balance between cortisol and DHEA, together with clinical assessment, served as a predictor of clinical outcome after anti-TB treatment. This research suggests that combined anti-HIV/TB therapies may partially restore both immune function and adrenal hormone levels. Supported by ORIP (P51OD011133).
Polyfunctional Tier 2–Neutralizing Antibodies Cloned Following HIV-1 Env Macaque Immunization Mirror Native Antibodies in a Human Donor
Spencer et al., Journal of Immunology. 2021.
https://doi.org/10.4049/jimmunol.2001082
HIV vaccine efforts are limited by viral strain diversity and the shielding of neutralization epitopes on the viral envelope, yet isolation of broadly neutralizing antibodies from infected individuals suggests the potential for eliciting protective antibodies through vaccination. Researchers cloned 58 monoclonal antibodies (mAbs) from a rhesus monkey immunized with envelope glycoprotein immunogens from an HIV-1 clade C–infected volunteer. Twenty mAbs exhibited some neutralizing activity. Cloned mAbs targeting the V3 region and CD4 binding site were capable of tier 2 (i.e., moderate) neutralization. This study demonstrates partial recapitulation of the human donor’s humoral immune response through nonhuman primate vaccination. Supported by ORIP (P51OD011092) and NIAID.
Larval Zebrafish Use Olfactory Detection of Sodium and Chloride to Avoid Salt Water
Herrera et al., Current Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/33338431/
Zebrafish are freshwater fish unable to tolerate high-salt environments and would benefit from neural mechanisms that enable the navigation of salt gradients to avoid high salinity. Yet zebrafish lack epithelial sodium channels, the primary conduit land animals use to taste sodium. This suggests fish may possess novel, undescribed mechanisms for salt detection. In the present study, the authors show that zebrafish indeed respond to small temporal increases in salt by reorienting more frequently. In summary, this study establishes that zebrafish larvae can navigate and thus detect salinity gradients and that this is achieved through previously undescribed sensory mechanisms for salt detection. Supported by ORIP (R43OD024879, R44OD024879) and NINDS.
Acoustofluidic Rotational Tweezing Enables High-Speed Contactless Morphological Phenotyping of Zebrafish Larvae
Chen et al., Nature Communications. 2021.
https://pubmed.ncbi.nlm.nih.gov/33602914/
These authors demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae enabling multispectral imaging of the zebrafish body and internal organs. They developed a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation. With its contactless nature and advantages in speed and automation, the acoustofluidic rotational tweezing system has the potential to be a valuable asset for developmental biology and pre-clinical drug development in pharmacology. Supported by ORIP (R43OD024963), NCI, and NIGMS.
Modified Adenovirus Prime–Protein Boost Clade C HIV Vaccine Strategy Results in Reduced Viral DNA in Blood and Tissues Following Tier 2 SHIV Challenge
Malherbe et al., Frontiers in Immunology. 2021.
https://doi.org/10.3389/fimmu.2020.626464
Researchers conducted a comparative vaccine challenge study in rhesus macaques. One group of monkeys was vaccinated using co-immunization with DNA Gag and Env expression plasmids and trimeric Env gp140 glycoprotein. The other group was primed with two replicating simian adenovirus-vectored vaccines expressing Gag and boosted with trimeric Env gp140. Both strategies elicited antigen-specific humoral and cellular immune responses, but neither approach provided significant protection from viral acquisition upon repeated mucosal challenges with a heterologous Tier 2 SHIV. Nevertheless, both regimens significantly lowered cell-associated viral DNA in multiple tissues, thus potentially dampening the infection and providing clues for further vaccine development. Supported by ORIP (U42OD023038, P51OD011092) and NIAID.
Evaluating a New Class of AKT/mTOR Activators for HIV Latency-Reversing Activity Ex Vivo and In Vivo
Gramatica et al., Journal of Virology. 2021.
https://doi.org/10.1128/JVI.02393-20
Activation of latent HIV-1 expression could benefit many HIV cure strategies. Researchers evaluated two AKT/mTOR activators, SB-216763 and tideglusib, as a potential new class of LRAs. The drugs reactivated latent HIV-1 present in blood samples from aviremic individuals on antiretroviral therapy without causing T cell activation or impaired effector function of cytotoxic T lymphocytes or NK cells. When tested in vivo in monkeys, tideglusib showed unfavorable pharmacodynamic properties and did not reverse SIV latency. The discordance between the ex vivo and in vivo results underscores the importance of developing novel LRAs that allow systemic drug delivery to relevant anatomical compartments. Supported by ORIP (P51OD011092), NIAID, NIGMS, NIMH, and NCI.
BNT162b Vaccines Protect Rhesus Macaques from SARS-CoV-2
Vogel et al., Nature. 2021.
https://www.nature.com/articles/s41586-021-03275-y
The preclinical development of two BNT162b vaccine candidates, which contain lipid-nanoparticle formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens, was performed in rhesus macaques at the Southwest National Primate Research Center (SNPRC). BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain. BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation. Prime/boost vaccination of rhesus macaques with BNT162b candidates elicits SARS-CoV-2 neutralizing antibody titers that are 8.2 to 18.2 times that of a SARS-CoV-2 convalescent human serum panel. The vaccine candidates protected macaques from SARS-CoV-2 challenge, with BNT162b2 protecting the lower respiratory tract from the presence of viral RNA and with no evidence of disease enhancement. The BNT162b2 vaccine recently received emergency use authorization from FDA and is being administered within the United States. The SNPRC is supported by ORIP (P51OD011103).
Natural Killer Cells Activated Through NKG2D Mediate Lung Ischemia-Reperfusion Injury
Calabrese et al., Journal of Clinical Investigation. 2021.
https://www.jci.org/articles/view/137047
Pulmonary ischemia-reperfusion injury (IRI) causes early mortality and has no effective therapies. While natural killer (NK) cells are innate lymphocytes capable of recognizing injured cells, their roles in acute lung injury are incompletely understood. Here, investigators demonstrated that NK cells were increased in frequency and cytotoxicity in 2 different IRI mouse models. They showed that NK cells trafficked to the lung tissue from peripheral reservoirs and were more mature within lung tissue. Acute lung ischemia-reperfusion injury was blunted in a NK cell–deficient mouse strain but restored with adoptive transfer of NK cells. In human lung tissue, NK cells were increased at sites of ischemia-reperfusion injury and activated NK cells were increased in prospectively-collected human bronchoalveolar lavage in subjects with severe IRI. These data support a causal role for recipient peripheral NK cells in pulmonary IRI via NK cell NKG2D receptor ligation. Therapies targeting NK cells may hold promise in acute lung injury. Supported by ORIP (S10OD026940), NHLBI, and NIDDK.
Trim-Away Mediated Knock Down Uncovers a New Function for Lbh During Gastrulation of Xenopus laevis
Weir et al., Developmental Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/33159936/
The protein Lbh was identified as necessary for cranial neural crest cell migration in Xenopus. To investigate its role in embryonic events, the authors employed the technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody. Early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increase in mesodermal cell migration and decrease in endodermal cell cohesion. The technique is also effective on a second abundant maternal Protein Kinase C And Casein Kinase Substrate In Neurons 2. Supported by ORIP (R24OD021485) and NIDCR.

