Selected Grantee Publications
- 608 results found
Negative Inotropic Mechanisms of β-cardiotoxin in Cardiomyocytes by Depression of Myofilament ATPase Activity without Activation of the Classical β-Adrenergic Pathway
Lertwanakarn et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-00282-x
Beta-cardiotoxin (β-CTX) from the king cobra venom (Ophiophagus hannah) was previously proposed as a novel β-adrenergic blocker. However, the involvement of β-adrenergic signaling by this compound has never been elucidated. The objectives of this study were to investigate the underlying mechanisms of β-CTX as a β-blocker and its association with the β-adrenergic pathway. Healthy Sprague Dawley rats were used for cardiomyocytes isolation. In summary, the negative inotropic mechanism of β-CTX was discovered. β-CTX exhibits an atypical β-blocker mechanism. These properties of β-CTX may benefit in developing a novel agent aid to treat hypertrophic cardiomyopathy. Supported by ORIP (P40OD010960) and NHLBI.
CD4+ T Cells Are Dispensable for Induction of Broad Heterologous HIV Neutralizing Antibodies in Rhesus Macaques
Sarkar et al., Frontiers in Immunology. 2021.
https://www.frontiersin.org/articles/10.3389/fimmu.2021.757811/full
Researchers investigated the humoral response in vaccinated rhesus macaques with CD4+ T cell depletion, using the VC10014 DNA protein co-immunization vaccine platform (with gp160 plasmids and gp140 trimeric proteins derived from an HIV-1 infected subject). Both CD4+-depleted and non-depleted animals developed comparable Tier 1 and 2 heterologous HIV-1 neutralizing plasma antibody titers. Thus, primates generate HIV neutralizing antibodies in the absence of robust CD4+ T cell help, which has important implications for vaccine development. Supported by ORIP (P51OD011092, P40OD028116, U42OD023038, U42OD010426), NIAID, and NIDCR.
Challenges and Considerations During In Vitro Production of Porcine Embryos
Chen et al., Cells. 2021.
https://pubmed.ncbi.nlm.nih.gov/34685749/
Genetically modified pigs have become valuable tools for generating advances in animal agriculture and human medicine. Importantly, in vitro production and manipulation of embryos is an essential step in the process of creating porcine models. As the in vitro environment is still suboptimal, it is imperative to examine the porcine embryo culture system from several angles to identify methods for improvement. Understanding metabolic characteristics of porcine embryos and considering comparisons with other mammalian species is useful for optimizing culture media formulations. Furthermore, stressors arising from the environment and maternal or paternal factors must be taken into consideration to produce healthy embryos in vitro. In this review, Chen et al progress stepwise through in vitro oocyte maturation, fertilization, and embryo culture in pigs to assess the status of current culture systems and address points where improvements can be made. Supported by ORIP (U42OD011140).
Integrated Spatial Multiomics Reveals Fibroblast Fate During Tissue Repair
Foster et al., PNAS. 2021.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8521719/
The function of regenerative medicine in wound healing remains elusive, partially because of how fibroblasts program and respond to injury remains unclear. Investigators presented a multimodal -omics platform for the comprehensive study of cell populations in complex tissue, which allowed characterization of cells involved in wound healing across time and space. Through integrated analysis of single cell chromatin landscapes and gene expression states, coupled with spatial transcriptomic profiling, fibroblast epigenomes were imputed with temporospatial resolution. This allowed revelation of potential mechanisms controlling fibroblast fate during migration, proliferation, and differentiation following skin injury, and reexamination of the canonical phases of wound healing. Supported by ORIP (S10OD018220) and others.
Collective Behavior Emerges from Genetically Controlled Simple Behavioral Motifs in Zebrafish
Harpaz et al., Science Advances. 2021.
https://www.science.org/doi/10.1126/sciadv.abi7460
Harpaz et al. report that zebrafish regulate their proximity and alignment with each other at early larval stages. Two visual responses (one measuring relative visual field occupancy and one accounting for global visual motion), account for emerging group behavior. Mutations in genes known to affect social behavior in humans perturb these reflexes in individual larval zebrafish and change their emergent collective behaviors. Model simulations show that changes in these two responses in individual mutant animals predict well the distinctive collective patterns that emerge in a group. Hence, group behaviors reflect in part genetically defined primitive sensorimotor “motifs” evident in young larvae. Supported by ORIP (R43OD024879, R44OD024879) and NINDS.
Limited Expansion of Human Hepatocytes in FAH/RAG2-Deficient Swine
Nelson et al., Tissue Engineering – Part A. 2021.
https://pubmed.ncbi.nlm.nih.gov/34309416/
The mammalian liver's regenerative ability has led researchers to engineer animals as incubators for expansion of human hepatocytes. Nelson et al. engineered immunodeficient swine to support expansion of human hepatocytes and identify barriers to their clinical application. Immunodeficient swine were engineered by knockout of the recombinase-activating gene 2 (RAG2) and fumarylacetoacetate hydrolase (FAH). Immature human hepatocytes (ihHCs) were injected into fetal swine by intrauterine cell transplantation (IUCT) at day 40 of gestation. They identified the mechanism of the eventual graft rejection by the intact NK cell population. They confirmed the presence of residual adaptive immunity in this model of immunodeficiency. Supported by ORIP (U42OD011140).
Comparative Cellular Analysis of Motor Cortex in Human, Marmoset and Mouse
Bakken et al., Nature. 2021.
https://pubmed.ncbi.nlm.nih.gov/34616062/
Investigators used high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmosets, and mice, to characterize the cellular makeup of the primary motor cortex (M1), which exhibits similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. Despite the overall conservation, many species-dependent specializations are apparent. These results demonstrate the robust molecular foundations of cell-type diversity in M1 across mammals and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations. Supported by ORIP (P51OD010425), NIMH, NCATS, NINDS, and NIDA.
Safety, Pharmacokinetics and Antiviral Activity of PGT121, a Broadly Neutralizing Monoclonal Antibody Against HIV-1: A Randomized, Placebo-Controlled, Phase 1 Clinical Trial
Stephenson et al., Nature Medicine. 2021.
https://doi.org/10.1038/s41591-021-01509-0
Researchers carried out a double-blind trial of one administration of the HIV-1 V3-glycan-specific antibody (Ab) PGT121 in HIV-uninfected and HIV-infected adults on antiretroviral therapy (ART), as well as an open-label trial of one infusion of PGT121 in viremic HIV-infected adults not on ART. The investigators observed no treatment-related serious adverse events among the 48 participants, and neutralizing anti-drug Abs were not elicited. PGT121 reduced plasma HIV RNA by a median of 1.77 log in viremic participants. Two individuals experienced ART-free viral suppression for ≥168 days following Ab infusion. These findings motivate further investigation of Ab-based therapeutic strategies for long-term HIV suppression. Supported by ORIP (R01OD024917, R01OD011095), NIAID, and NCATS.
A Novel Non-Human Primate Model of Pelizaeus-Merzbacher Disease
Sherman et al., Neurobiology of Disease. 2021.
https://www.sciencedirect.com/science/article/pii/S096999612100214X
Pelizaeus-Merzbacher disease (PMD) in humans is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Investigators report on three spontaneous cases of male neonatal rhesus macaques (RMs) with clinical symptoms of hypomyelinating disease. Genetic analysis revealed that the parents of these related RMs carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These RMs represent the first reported NHP model of PMD, providing an opportunity for studies to promote myelination in pediatric hypomyelinating diseases, as other animal models for PMD do not fully mimic the human disorder. Supported by ORIP (R24OD021324, P51OD011092, and S10OD025002) and NINDS.
Genetic Basis For an Evolutionary Shift From Ancestral Preaxial to Postaxial Limb Polarity in Non-urodele Vertebrates
Trofka et al., Current Biology. 2021.
https://www.sciencedirect.com/science/article/pii/S0960982221012501
In most tetrapod vertebrates, limb skeletal progenitors condense with postaxial dominance. Posterior elements (ulna and fibula) appear prior to their anterior counterparts (radius and tibia), followed by digit-appearance order with continuing postaxial polarity. Recent fossil evidence suggests that preaxial polarity represents an ancestral rather than derived state. These authors report that 5'Hoxd (Hoxd11-d13) gene deletion in mouse is atavistic and uncovers an underlying preaxial polarity in mammalian limb formation. Evolutionary changes in Gli3R activity level, key in the fin-to-limb transition, appear to be fundamental to the shift from preaxial to postaxial polarity in formation of the tetrapod limb skeleton. Supported by ORIP (P40OD01979) and NCI.

