Selected Grantee Publications
- Clear All
- 20 results found
- Artificial Intelligence/Machine Learning
- Spectrometry
Systematic Multi-trait AAV Capsid Engineering for Efficient Gene Delivery
Eid et al., Nature Communications. 2024.
https://doi.org/10.1038/s41467-024-50555-y
Engineering novel functions into proteins while retaining desired traits is a key challenge for developers of viral vectors, antibodies, and inhibitors of medical and industrial value. In this study, investigators developed Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait adeno-associated virus (AAV) capsids. Fit4Function was used to generate reproducible screening data from a capsid library that samples the entire manufacturable sequence space. The Fit4Function data were used to train accurate sequence-to-function models, which were combined to develop a library of capsid candidates. Compared to AAV9, top candidates from the Fit4Function capsid library exhibited comparable production yields; more efficient murine liver transduction; up to 1,000-fold greater human hepatocyte transduction; and increased enrichment in a screen for liver transduction in macaques. The Fit4Function strategy enables prediction of peptide-modified AAV capsid traits across species and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Supported by ORIP (P51OD011107, U42OD027094), NIDDK, NIMH, and NINDS.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.
The Monarch Initiative in 2024: An Analytic Platform Integrating Phenotypes, Genes and Diseases Across Species
Putman et al., Nucleic Acids Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38000386/
The Monarch Initiative aims to bridge the gap between the genetic variations, environmental determinants, and phenotypic outcomes critical for translational research. The Monarch app provides researchers access to curated data sets with information on genes, phenotypes, and diseases across species and advanced analysis tools for such diverse applications as variant prioritization, deep phenotyping, and patient profile matching. Researchers describe upgrades to the app, including scalable cloud-based infrastructure, simplified data ingestion and knowledge graph integration systems, enhanced data mapping and integration standards, and a new user interface with novel search and graph navigation features. A customized plugin for OpenAI’s ChatGPT allows the use of large language models to interrogate knowledge in the Monarch graph and increase the reliability of the responses of Monarch’s analytic tools. These upgrades will enhance clinical diagnosis and the understanding of disease mechanisms. Supported by ORIP (R24OD011883), NLM, and NHGRI.
Lymphoid Tissues Contribute to Plasma Viral Clonotypes Early After Antiretroviral Therapy Interruption in SIV-Infected Rhesus Macaques
Solis-Leal et al., Science Translational Medicine. 2023.
https://pubmed.ncbi.nlm.nih.gov/38091409/
Researchers are interested in better understanding the sources, timing, and mechanisms of HIV rebound that occurs after interruption of antiretroviral therapy (ART). Using rhesus macaques (sex not specified), investigators tracked barcoded simian immunodeficiency virus (SIV) clonotypes over time and among tissues. Among the tissues studied, mesenteric lymph nodes, inguinal lymph nodes, and spleen contained viral barcodes detected in plasma. Additionally, the authors reported that CD4+ T cells harbored the most viral RNA after ART interruption. These tissues are likely to contribute to viral reactivation and rebound after ART interruption, but further studies are needed to evaluate the relative potential contributions from other tissues and organs. Supported by ORIP (P51OD011104, P51OD011133, S10OD028732, S10OD028653), NCI, NIMH, and NINDS.
Molecular Insights Into Antibody-Mediated Protection Against the Prototypic Simian Immunodeficiency Virus
Zhao et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-32783-2
Most simian immunodeficiency virus (SIV) vaccines have focused on inducing T cell responses alone or in combination with non-neutralizing antibody responses. To date, studies investigating neutralizing antibody (nAb) responses to protect against SIV have been limited. In this study, researchers isolated 12 potent monoclonal nAbs from chronically infected rhesus macaques of both sexes and mapped their binding specificities on the envelope trimer structure. They further characterized the structures using cryogenic electron microscopy, mass spectrometry, and computational modeling. Their findings indicate that, in the case of humoral immunity, nAb activity is necessary and sufficient for protection against SIV challenge. This work provides structural insights for future vaccine design. Supported by ORIP (P51OD011106), NIAID, and NCI.
A Multidimensional Metabolomics Workflow to Image Biodistribution and Evaluate Pharmacodynamics in Adult Zebrafish
Jackstadt et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049550
The evaluation of tissue distribution and pharmacodynamic properties of a drug is essential but often expensive in clinical research. The investigators developed a multidimensional metabolomics platform to evaluate drug activity that integrates mass spectrometry–based imaging, absolute drug quantitation, in vivo isotope tracing, and global metabolome analysis in zebrafish. They validated this platform by evaluating whole-body distribution of the anti-rheumatic agent hydroxychloroquine sulfate and its impact on the systemic metabolism of adult zebrafish. This work suggests that the multidimensional metabolomics platform is a cost-effective method for evaluating on- and off-target effects of drugs. Supported by ORIP (R24OD024624) and NIEHS.
Effects of Ex Vivo Blood Anticoagulation and Preanalytical Processing Time on the Proteome Content of Platelets
Yunga et al., Journal of Thrombosis and Haemostasis. 2022.
https://www.doi.org/10.1111/jth.15694
The investigators studied how various blood anticoagulation options and processing times affect platelet function and protein content ex vivo. Using platelet proteome quantification and triple quadrupole mass spectrometry, they found that anticoagulant-specific effects on platelet proteomes included increased complement system and decreased α-granule proteins in platelets from EDTA-anticoagulated blood. Heparinized blood had higher levels of histone and neutrophil-associated proteins, as well as formation of platelet–neutrophil extracellular trap interactions in whole blood ex vivo. The study indicates that different anticoagulants and preanalytical processing times affect platelet function and platelet protein content ex vivo, suggesting more rigorous phenotyping strategies for platelet omics studies. Supported by ORIP (S10OD012246), NHLBI, NCI and NEI.
Phase Separation Drives Aberrant Chromatin Looping and Cancer Development
Ahn et al., Nature. 2021.
https://doi.org/10.1038/s41586-021-03662-5
How unstructured intrinsically disordered regions (IDRs) contribute to oncogenesis is elusive. Using an Orbitrap fusion tribrid mass spectrometer, investigators show that IDRs contained within NUP98–HOXA9, a homeodomain-containing transcription factor chimera recurrently detected in leukaemias, are essential for establishing liquid–liquid phase separation (LLPS) puncta of chimera and for inducing leukaemic transformation. LLPS of NUP98–HOXA9 not only promotes chromatin occupancy of chimera transcription factors, but also is required for the formation of a broad “super-enhancer”-like binding pattern typically seen at leukaemogenic genes, which potentiates transcriptional activation. An artificial HOX chimera, created by replacing the phenylalanine and glycine repeats of NUP98 with an unrelated LLPS-forming IDR of the FUS protein, had similar enhancing effects on the genome-wide binding and target gene activation of the chimera. This report describes a proof-of-principle example in which cancer acquires mutation to establish oncogenic transcription factor condensates via phase separation, which simultaneously enhances their genomic targeting and induces organization of aberrant three-dimensional chromatin structure during tumor transformation. Supported by ORIP (S10OD018445).
Metabolomics Analysis of Follicular Fluid Coupled With Oocyte Aspiration Reveals Importance of Glucocorticoids in Primate Periovulatory Follicle Competency
Ravisankar et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-85704-6
Assisted reproductive therapy in primates requires ovarian stimulation protocols, which result in multiple heterogeneous oocytes with variable capacity for fertilization, cleavage, and blastocyst formation. Recovered oocytes from rhesus macaque follicles (n=74 follicles) were fertilized in vitro and classified as failed to cleave, cleaved but arrested, or able to form blastocysts. Metabolomics analysis of the follicular fluid identified 60 metabolites that were different among embryo classifications; key was an increase in the intrafollicular ratio of cortisol to cortisone in the blastocyst group, which was associated with translocation of the glucocorticoid receptor, NR3C1. The data suggest a role for NR3C1 in the regulation of follicular processes, such as expansion of cumulus granulosa cells, via paracrine signaling. Supported by ORIP (P51OD011092) and NICHD.