Selected Grantee Publications
- Clear All
- 25 results found
- S10 [SIG, BIG, HEI]
- Imaging
AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys
Liang et al., Human Gene Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38767512/
Genome editing in somatic cells and tissues has the potential to provide long-term expression of therapeutic proteins to treat a variety of genetic lung disorders. However, delivering genome-editing machinery to disease-relevant cell types in the lungs of primates has remained a challenge. Investigators of this article are participating in the NIH Somatic Cell Genome Editing Consortium. Herein, they demonstrate that intratracheal administration of a dual adeno-associated virus type 5 vector encoding CRISPR/Cas9 can mediate genome editing in rhesus (male and female) airways. Up to 8% editing was observed in lung lobes, including a housekeeping gene, GAPDH, and a disease-related gene, angiotensin-converting enzyme 2. Using single-nucleus RNA-sequencing, investigators systematically characterized cell types transduced by the vector. Supported by ORIP (P51OD01110, U42OD027094, S10OD028713), NCATS, NCI, and NHLBI.
Natural Killer–Like B Cells Are a Distinct but Infrequent Innate Immune Cell Subset Modulated by SIV Infection of Rhesus Macaques
Manickam et al., PLOS Pathogens. 2024.
https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1012223
Natural killer–like B (NKB) cells express both natural killer (NK) and B cell receptors. Intracellular signaling proteins and trafficking markers were expressed differentially on naive NKB cells. CD20+ NKG2A/C+ NKB cells were identified in organs and lymph nodes of naive rhesus macaques (RMs). Single-cell RNA sequencing (scRNAseq) of sorted NKB cells confirmed that NKB cells are unique, and transcriptomic analysis of naive splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. Expanded NKB frequencies were observed in RM gut and buccal mucosa after simian immunodeficiency virus (SIV) infection, and mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes. NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings. Supported by ORIP (P51OD011132, S10OD026799) and NIAID.
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.
Tumor Explants Elucidate a Cascade of Paracrine SHH, WNT, and VEGF Signals Driving Pancreatic Cancer Angiosuppression
Hasselluhn et al., Cancer Discovery. 2024.
https://pubmed.ncbi.nlm.nih.gov/37966260/
This study presents a key mechanism that prevents pancreatic ductal adenocarcinoma (PDAC) from undergoing neoangiogenesis, which affects its development, pathophysiology, metabolism, and treatment response. Using human and murine PDAC explants, which effectively retain the complex cellular interactions of native tumor tissues, and single-cell regulatory network analysis, the study identified a cascade of three paracrine pathways bridging between multiple cell types and acting sequentially, Hedgehog to WNT to VEGF, as a key suppressor of angiogenesis in KRAS-mutant PDAC cells. This study provides an experimental paradigm for dissecting higher-order cellular interactions in tissues and has implications for PDAC treatment strategies. Supported by ORIP (S10OD012351, S10OD021764), NCI, and NIDDK.
First-in-Human ImmunoPET Imaging of COVID-19 Convalescent Patients Using Dynamic Total-Body PET and a CD8-Targeted Minibody
Omidvari et al., Science Advances. 2023.
https://pubmed.ncbi.nlm.nih.gov/36993568/
Developing noninvasive methods for in vivo quantification of T cell distribution and kinetics is important because most T cells reside in the tissue. Investigators presented the first use of dynamic positron emission tomography (PET) and kinetic modeling for in vivo measurement of CD8+ T cell distribution in healthy individuals and COVID-19 patients. Kinetic modeling results aligned with the expected T cell trafficking effects. Tissue-to-blood ratios were consistent with modeled net influx rates and flow cytometry analysis. These results provide a promising platform for using dynamic PET to study the total-body immune response and memory. Supported by ORIP (S10OD018223) and NCI.
Association of Age at Menopause and Hormone Therapy Use With Tau and β-Amyloid Positron Emission Tomography
Coughlan et al., JAMA Neurology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37010830/
To understand the predominance (70%) of women among individuals with Alzheimer’s disease, the investigators studied regional tau and β-amyloid (Aβ) in relation to age at menopause and hormone therapy (HT) in postmenopausal women and age-matched men using positron emission tomography. The study demonstrated that females exhibited higher tau deposition compared with age-matched males, particularly in the setting of elevated Aβ; earlier age at menopause and late initiation of HT were associated with increased tau vulnerability. This study suggests female individuals with these conditions may be at higher risk of pathological burden. Supported by ORIP (S10OD025245), NIA, and NICHD.
3D-Bioprinted Phantom With Human Skin Phototypes for Biomedical Optics
Yim et al., Advanced Materials. 2023.
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.202206385
Human skin offers important physical and immunological protection based on its makeup with diverse cell types, including melanocytes, and variations in skin phototypes controlled by melanin concentration have negatively affected many optic technologies and wearable health-tracking electronic devices. To mimic the effects of melanosome variation, investigators studied optical properties and photoacoustic signal of synthetic melanin to create a 3D bioprinting rendition of the human epidermal thin layers. The effect of skin phototypes on thin-layer skin imaging at different wavelengths was quantified. These data could serve as a benchmark calibration tool of light-mediated diagnostics toward clinical use and further underpin development of biomedical optics. Supported by ORIP (S10OD023527, S10OD021821).
Using the Autofluorescence Finder on the Sony ID7000TM Spectral Cell Analyzer to Identify and Unmix Multiple Highly Autofluorescent Murine Lung Populations
Wanner et al., Frontiers in Bioengineering and Biotechnology. 2022.
https://www.doi.org/10.3389/fbioe.2022.827987
The investigators explored a new imaging approach to detect faint fluorescent signals that are masked in the background of cell types that emit high‑intensity autofluorescence (AF) signals in a flow cytometry panel. Using a novel AF finder tool on the Sony ID7000™ spectral cell analyzer, the investigators studied multiple AF subsets in complex and heterogeneous murine lung single-cell suspensions. Major immune and lung tissue resident cells in a murine model of asthma were easily identified in a multicolor panel using AF subtraction. The findings demonstrate the practicality of the AF finder tool, particularly when analyzing samples with multiple AF populations of varying intensities, to reduce fluorescence background and increase signal resolution in spectral flow cytometry. Supported by ORIP (S10OD025207) and NHLBI.
Selective G Protein Signaling Driven by Substance P–Neurokinin Receptor Dynamics
Harris et al., Nature Chemical Biology. 2021.
https://www.nature.com/articles/s41589-021-00890-8
Investigators determined the cryogenic-electron microscopy structures of active neurokinin-1 receptor (NK1R) bound to neuropeptide substance P (SP) or the G protein q (Gq)-biased peptide SP6–11. Peptide interactions deep within NK1R are critical for receptor activation. Conversely, interactions between SP and NK1R extracellular loops are required for potent Gs-signaling but not Gq-signaling. Molecular dynamics simulations showed that these superficial contacts restrict SP flexibility. SP6–11, which lacks these interactions, is dynamic while bound to NK1R. Structural dynamics of NK1R agonists therefore depend on interactions with the receptor extracellular loops and regulate G protein signaling selectivity. This data unveils the molecular mechanism of how two stimuli (SP and Neurokinin A) yield distinct G protein signaling at the same G protein-coupled receptor. Supported by ORIP (S10OD021741, S10OD020054) and others.
Tissue-Specific Transcriptional Profiling of Plasmacytoid Dendritic Cells Reveals a Hyperactivated State in Chronic SIV Infection
Lee et al., PLOS Pathogens. 2021.
https://doi.org/10.1371/journal.ppat.1009674
Persistent immune activation is an obstacle to optimal health for people living with HIV. Using RNA sequencing, researchers investigated the immunostimulatory potential of plasmacytoid dendritic cells (pDCs) in chronic SIV infection in rhesus macaques. They observed that pDCs have highly activated profiles in these animals. In contrast, pDCs from SIV-infected sooty mangabeys (natural hosts for SIV) had expression profiles similar to uninfected animals. In chronically infected rhesus macaques, interferon alpha transcripts were readily detected in lymph node-homing pDCs, but not those from blood. Therefore, pDCs are a major producer of type-I interferon in chronic SIV infection and could be a useful immunotherapy target. Supported by ORIP (R24OD010445, P51OD011132, P51OD011092, S10OD026799) and NIAID.