Selected Grantee Publications
Mineralocorticoid Receptor Blockade Normalizes Coronary Resistance in Obese Swine Independent of Functional Alterations in Kv Channels
Goodwill et al., Basic Research in Cardiology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34018061/
Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening. Supported by ORIP (U42OD011140, S10OD023438), NHLBI, and NIBIB.
Tract Pathogen-Mediated Inflammation Through Development of Multimodal Treatment Regimen and Its Impact on SIV Acquisition in Rhesus Macaques
Bochart et al., PLOS Pathogens. 2021.
https://doi.org/10.1371/journal.ppat.1009565
In addition to being premier HIV models, rhesus macaques are models for other infectious diseases and colitis, where background colon health and inflammation may confound results. Starting with the standard specific-pathogen-free (SPF) model, researchers established a gastrointestinal pathogen-free (GPF) colony via multimodal therapy (enrofloxacin, azithromycin, fenbendazole, and paromomycin) to eliminate common endemic pathogens (EPs). This treatment combined with continued pathogen exclusion eliminated common EPs, improved mucosal barriers, and reduced mucosal and systemic inflammation without microbiota disruption. GPF animals challenged with SIV intrarectally demonstrated a more controlled and consistent rate of SIV acquisition, suggesting the value of this model for HIV studies. Supported by ORIP (U42OD023038, P51OD011092), NCI, and NIAID.
Psychosocial Stress Alters the Immune Response and Results in Higher Viral Load During Acute SIV Infection in a Pigtailed Macaque Model of HIV
Guerrero-Martin et al., Journal of Infectious Diseases. 2021.
https://doi.org/10.1093/infdis/jiab252
Social distancing is an important countermeasure for a pandemic, but social isolation may also have adverse health outcomes in the context of infectious diseases, such as HIV. Researchers compared commonly measured parameters of HIV progression between singly and socially housed simian immunodeficiency virus (SIV)-infected pigtailed macaques. Throughout acute SIV infection, singly housed pigtailed macaques had a higher viral load in the plasma and cerebrospinal fluid and demonstrated greater CD4+ T cell declines and more CD4+ and CD8+ T cell activation compared to socially housed macaques. These findings suggest that psychosocial stress could augment the progression of HIV infection. Supported by ORIP (U42OD013117, P40OD013117, K01OD018244), NIAID, NINDS, and NIMH.
Combining In Vivo Corneal Confocal Microscopy With Deep Learning-Based Analysis Reveals Sensory Nerve Fiber Loss in Acute Simian Immunodeficiency Virus Infection
McCarron et al., Cornea. 2021.
https://doi.org/10.1097/ICO.0000000000002661
Researchers characterized corneal subbasal nerve plexus features of normal and simian immunodeficiency virus (SIV)-infected pigtail and rhesus macaques using in vivo confocal microscopy and a deep learning approach for automated assessments. Corneal nerve fiber length and fractal dimension measurements did not differ between species, but pigtail macaques had significantly higher baseline corneal nerve fiber tortuosity than rhesus macaques. Acute SIV infection induced decreased corneal nerve fiber length and fractal dimension in the pigtail macaque model for HIV. Adapting deep learning analyses to clinical corneal nerve assessments will improve monitoring of small sensory nerve fiber damage in numerous clinical contexts, including HIV. Supported by ORIP (U42OD013117) and NINDS.
Modulation of MHC-E Transport by Viral Decoy Ligands Is Required for RhCMV/SIV Vaccine Efficacy
Verweij et al., Science. 2021.
https://doi.org/10.1126/science.abe9233
Rhesus cytomegalovirus (RhCMV) strain 68-1-vectored simian immunodeficiency virus (SIV) vaccines elicit strong CD8+ T cell responses that can clear SIV infections. Peptides targeted by these T cells are presented on major histocompatibility complex (MHC) II and MHC-E rather than MHC-Ia. Researchers showed that VL9 drives intracellular transport of MHC-E and recognition of RhCMV-infected targets by MHC-E-restricted CD8+ T cells. Specific-pathogen-free (SPF) rhesus macaques vaccinated with a mutant 68-1 RhCMV lacking VL9 showed no priming of MHC-E-restricted CD8+ T cells and no protection against SIV, suggesting that future effective CMV-based HIV vaccines will require MHC-E-restricted CD8+ T cell priming. Supported by ORIP (U42OD023038, P51OD011092), NIAID, and NCI.
Functional Convergence of a Germline-Encoded Neutralizing Antibody Response in Rhesus Macaques Immunized with HCV Envelope Glycoproteins
Chen et al., Immunity. 2021.
https://doi.org/10.1016/j.immuni.2021.02.013
Immunoglobulin heavy chain variable gene IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) targeting the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection in humans. An IGHV1-69 ortholog, VH1.36, is preferentially used for bnAbs isolated from rhesus macaques immunized against HCV Env. Researchers investigated the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by HCV Env vaccination of macaques and compared their findings to IGHV1-69-encoded bnAbs from HCV patients. The investigators found that macaque VH1.36- and human IGHV1-69-encoded bnAbs share many common features, which provides an excellent framework for rational HCV vaccine design and testing. Supported by ORIP (P51OD011133, U42OD010442), NIAID, NCI, and NIGMS.
Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence
Casalia et al., Journal of Neuroscience. 2021.
https://pubmed.ncbi.nlm.nih.gov/33637558/
The authors report that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents. Their findings reveal that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies. They demonstrate that porcine medial ganglionic eminence exhibits a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity, and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in monkeys and humans), their work allows direct neurodevelopmental comparisons with this literature. Supported by ORIP (U42OD011140) and NINDS.
Cytomegaloviral Determinants of CD8+ T Cell Programming and RhCMV/SIV Vaccine Efficacy
Malouli et al., Science Immunology. 2021.
https://www.science.org/doi/10.1126/sciimmunol.abg5413
Cytomegalovirus (CMV)-based vaccine vectors were developed to leverage the ability of CMVs to elicit sustained CD4+ and CD8+ T cell responses with broad tissue distribution. The 68-1 rhesus cytomegalovirus (RhCMV) vectors that express simian immunodeficiency virus (SIV) inserts induce major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+T cell responses. The contribution of this unconventional MHC restriction to RhCMV/SIV vaccine efficacy are poorly understood. Researchers demonstrated that these responses result from genetic rearrangements in 68-1 RhCMV that disrupt the function of eight immunomodulatory proteins encoded by the virus. Repair of each of these genes with either RhCMV or human CMV counterparts shifted responses to MHC-Ia-restricted, or MHC-Ia- and MHC-II-restricted, CD8 T cell responses, but repairing the RhCMV genes did not protect against SIV. These findings suggest that MHC-E-restricted CD8+ T cell responses may be critical to protection against SIV. Supported by ORIP (U42OD023038, P51OD011092).
Creb5 Establishes the Competence for Prg4 Expression in Articular Cartilage
Zhang et al., Communications Biology. 2021.
https://doi.org/10.1038/s42003-021-01857-0
Cells comprising the superficial zone of articular cartilage express lubricin, encoded by the Prg4 gene, that lubricates joints. Researchers identified Creb5 as a transcription factor that is required for TGF-β and EGFR signaling to induce Prg4 expression. Forced expression of Creb5 in deep-zone chondrocytes of articular cartilage confers competence for TGF-β and EGFR signals to induce Prg4 expression. The researchers showed that Creb5 directly binds to two Prg4 promoter-proximal regulatory elements, which work together with a more distal regulatory element to drive induction of Prg4 by TGF-β. Thus, Creb5 is a critical regulator of Prg4/lubricin expression in the articular cartilage. Supported by ORIP (U42OD11158), NIAMS, and NIDDK.
New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission, Immunopathogenesis, Prevention, and Cure
Li et al., Journal of Virology. 2021.
https://doi.org/10.1128/JVI.00071-21
Researchers knew that substitution of HIV-1 Env residue 375-serine by aromatic residues enhances binding to rhesus CD4 enabling primary HIV-1 Envs to support replication as simian-human immunodeficiency virus (SHIV) chimeras in rhesus monkeys. The investigators constructed SHIVs containing 10 primary Envs corresponding to HIV-1 subtypes A, B, C, AE, and AG. Only one with histidine at Env375 replicated efficiently in rhesus cells. Replacement of wild-type Env375 residues by tryptophan, tyrosine, phenylalanine, or histidine in the other 9 SHIVs led to efficient replication. These new SHIVs transmit via mucosal routes like HIV-1 and have use for vaccine testing in nonhuman primates. Supported by ORIP (U42OD021458, P40OD012217), NIAID, and NCI.