Selected Grantee Publications
Induction of Durable Remission by Dual Immunotherapy in SHIV-Infected ART-Suppressed Macaques
Lim et al., Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/38422185/
The latent viral reservoir is established within the first few days of HIV infection and remains a barrier to a clinical cure. Researchers characterized the effects of a combined Anktiva (N-803) treatment with broadly neutralizing antibodies (bNAbs) using male and female rhesus macaques infected with simian–human immunodeficiency virus infection. Their data suggest that these agents synergize to enhance CD8+ T-cell function, particularly when multiple bNAbs are used. Taken together, this work indicates that immune-mediated control of viral rebound is not a prerequisite for sustained remission after discontinuation of antiretroviral therapy and that immune-mediated control of viral rebound is achievable, sufficient, and sustainable in this model. Supported by ORIP (P51OD011106, P40OD028116, R24OD011195) and NIAID.
TGF-β Blockade Drives a Transitional Effector Phenotype in T Cells Reversing SIV Latency and Decreasing SIV Reservoirs In Vivo
Kim et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/38355731/
Interruption of antiretroviral therapy leads to rapid rebound of viremia due to the establishment of a persistent viral reservoir early after infection. Using a treatment regimen similar to the one tested in clinical trials, the authors show how galunisertib affects immune cell function, increases simian immunodeficiency virus (SIV) reactivation, and reduces the viral reservoir in female rhesus macaques. Their findings reveal a galunisertib-driven shift toward an effector phenotype in T and natural killer cells. Taken together, this work demonstrates that galunisertib, a clinical-stage TGF-β inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in the absence of toxicity. Supported by ORIP (R24OD010947), NIAID, and NCI.
Epigenetic MLH1 Silencing Concurs With Mismatch Repair Deficiency in Sporadic, Naturally Occurring Colorectal Cancer in Rhesus Macaques
Deycmar et al., Journal of Translational Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38504345
Rhesus macaques serve as a useful model for colorectal cancer (CRC) in humans, but more data are needed to understand the molecular pathogenesis of these cancers. Using male and female rhesus macaques, researchers investigated mismatch repair status, microsatellite instability, genetic mutations, transcriptional differences, and epigenetic alterations associated with CRC. Their data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. This work provides a uniquely informative model for human CRC. Supported by ORIP (P51OD011092, R24OD010947, R24OD021324, P40OD012217, U42OD010426, T35OD010946, T32OD010957), NCATS, and NCI.
CDK4/6 Inhibition Sensitizes Intracranial Tumors to PD-1 Blockade in Preclinical Models of Brain Metastasis
Nayyer et al., Clinical Cancer Research. 2024.
Brain metastases are associated with high morbidity and are often resistant to immune checkpoint inhibitors. In this study, investigators evaluated the efficacy of combining CDKi (abemaciclib) and anti–PD-1 therapy (“combination therapy”) in mouse models for brain metastases, elucidated how combination therapy remodeled the tumor–immune microenvironment (TIME) and T-cell receptor (TCR) repertoires, and investigated the effects of CDKi on T-cell development and maintenance in NOD-scid Il2rgnull (NSG) mice engrafted with human immune systems (“humanized mice”). Results offer a strong rationale for the clinical evaluation of combination CDKi and PD-1 blockade in patients with brain metastases. Supported by ORIP (R24OD026440), NCI, and NIAID.
Validity of Xiphophorus Fish as Models for Human Disease
Schartl and Lu, Disease Models and Mechanisms. 2024.
https://pubmed.ncbi.nlm.nih.gov/38299666/
Xiphophorus is the one of the oldest animal systems for studying melanoma. In this article, the authors summarize current Xiphophorus models for other human diseases. They review how Xiphophorus fishes and their interspecies hybrids can be used for studying human diseases and highlight research opportunities enabled by these unique models (both established and emerging). They identified several emerging Xiphophorus models, including for albinism, micromelanophore pigmentation, fin regeneration, and diet-induced obesity. The research on cancer and reproductive maturation discussed in this review substantiates the value of Xiphophorus as a model for human disease throughout all three phases of validation—face, construct, and predictive—and continues to provide important scientific insights. Supported by ORIP (R24OD031467, R21OD031910) and NCI.
Injury-Induced Cooperation of InhibinβA and JunB is Essential for Cell Proliferation in Xenopus Tadpole Tail Regeneration
Nakamura et al., Scientific Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/38355764/
Certain animal species (e.g., amphibians) that can regenerate lost tissues and limbs after injury offer potential for applications in regenerative medicine. Cell proliferation is essential for the reconstruction of injured tissue, but the molecular mechanisms that regulate the transition from wound healing to regenerative cell proliferation remain unclear. Using Xenopus tropicalis, investigators examined the effects of injury on the expression of inhibin subunit beta A (inhba) and junB proto-oncogene (junb). Their findings shed light on the mechanisms underlying injury-induced cell proliferation in regenerative animals. Supported by ORIP (P40OD010997, R24OD030008).
GenomeMUSter Mouse Genetic Variation Service Enables Multitrait, Multipopulation Data Integration and Analysis
Ball et al., Genome Research. 2024.
https://genome.cshlp.org/content/34/1/145.long
Advances in genetics, including transcriptome-wide and phenome-wide association analysis methods, create compelling new opportunities for using fully reproducible and widely studied inbred mouse strains to characterize the polygenetic basis for individual differences in disease-related traits. Investigators developed an imputation approach and implemented data service to provide a broad and more comprehensive mouse variant resource. They evaluated the strain-specific imputation accuracy on a “held-out” test set that was not used in the imputation process. The authors present its application to multipopulation and multispecies analyses of complex trait variation in type 2 diabetes and substance use disorders and compare these results to human genetics studies. Supported by ORIP (U42OD010921, P40OD011102, R24OD035408), NCI, NIAAA, NIDA, and NIDCD.
Effect of Hormone Replacement Therapy on Amyloid Beta (Aβ) Plaque Density in the Rhesus Macaque Amygdala
Appleman et al., Frontiers in Aging Neuroscience. 2024.
https://www.frontiersin.org/articles/10.3389/fnagi.2023.1326747/full
Amyloid beta plaque density is associated with Alzheimer’s disease. In this study, the authors examined its concentration in aged female nonhuman primates’ cerebrospinal fluid, as well as in the amygdala, an area of the brain involved with emotion and memory. They set out to test the hypothesis that estrogen hormone replacement therapy can beneficially affect amygdala Aβ plaque density in “surgically menopausal” females (i.e., aged rhesus macaques that had undergone ovariectomy). Female rhesus macaques that received estrogen replacement therapy showed fewer amyloid plaques than those that did not receive the hormone. This effect was observed regardless of the type of diet that the animals consumed. These findings suggest that hormone replacement might be a helpful treatment to consider for Alzheimer’s disease. Supported by ORIP (P51OD011092, R24OD011895, S10OD025002) and NIA.
Establishment of a Practical Sperm Cryopreservation Pathway for the Axolotl (Ambystoma mexicanum): A Community-Level Approach to Germplasm Repository Development
Coxe et al., Animals (Basel). 2024.
https://pubmed.ncbi.nlm.nih.gov/38254376/
The axolotl (Ambystoma mexicanum) is an important biomedical research model for organ regeneration, but housing and maintaining live animals is expensive and risky as new transgenic lines are developed. The authors report an initial practical pathway for sperm cryopreservation to support germplasm repository development. They assembled a pathway through the investigation of axolotl sperm collection by stripping, refrigerated storage in various osmotic pressures, cryopreservation in various cryoprotectants, and in vitro fertilization using thawed sperm. This work is the first report of successful production of axolotl offspring with cryopreserved sperm and provides a general framework for pathway development to establish Ambystoma germplasm repositories for future research and applications. Supported by ORIP (R24OD010441, R24OD028443, P40OD019794).
Conduction-Dominated Cryomesh for Organism Vitrification
Guo et al., Advanced Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/38018294/
Vitrification-based cryopreservation via cryomesh is a promising approach for maintaining biodiversity, health care, and sustainable food production via long-term preservation of biological systems. Here, researchers conducted a series of experiments aimed at optimizing the cooling and rewarming rates of cryomesh to increase the viability of various cryopreserved biosystems. They found that vitrification was significantly improved by increasing thermal conductivity, reducing mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier of the conduction-dominated cryomesh. Cooling rates increased twofold to tenfold in a variety of biosystems. The conduction-dominated cryomesh improved the cryopreservation outcomes of coral larvae, Drosophila embryos, and zebrafish embryos by vitrification. These findings suggest that the conduction-dominated cryomesh can improve vitrification in such biosystems for biorepositories, agriculture and aquaculture, and research. Supported by ORIP (R24OD028444, R21OD028758, R24OD034063, R21OD028214), NIDDK, and NIGMS.