Selected Grantee Publications
- Clear All
- 57 results found
- Neurological
- Genetics
De Novo Variants in EMC1 Lead to Neurodevelopmental Delay and Cerebellar Degeneration and Affect Glial Function in Drosophila
Chung et al., Human Molecular Genetics. 2022.
https://www.doi.org/10.1093/hmg/ddac053
Variants in EMC1, which encodes a subunit of the endoplasmic reticulum (ER)–membrane protein complex (EMC), are associated with developmental delay in children. Functional consequences of these variants are poorly understood. The investigators identified de novo variants in EMC1 in three children affected by global developmental delay, hypotonia, seizures, visual impairment, and cerebellar atrophy. They demonstrated in Drosophila that these variants are loss-of-function alleles and lead to lethality when expressed in glia but not in neurons. This work suggests the causality of EMC variants in disease. Supported by ORIP (R24OD022005, R24OD031447), NINDS, and NICHD.
Lesion Environments Direct Transplanted Neural Progenitors Towards a Wound Repair Astroglial Phenotype in Mice
O’Shea et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33382-x
Neural progenitor cells (NPCs) are potential cell transplantation therapies for central nervous system (CNS) injuries. Investigators derived NPCs expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling. Their findings reveal similarities between the transcriptional profiles, cellular morphologies, and functional features of cells transplanted into subacute CNS lesions and host astroglia. The astroglia are stimulated by injuries to proliferate and adopt a naturally occurring, border-forming wound repair phenotype in mice of both sexes. Understanding the autonomous cues instructing NPCs transplanted in CNS host tissue will be fundamental to therapeutic NPC transplantation. Supported by ORIP (U42OD010921,U42OD011174, UM1OD023222) and NINDS.
Molecular and Cellular Evolution of the Primate Dorsolateral Prefrontal Cortex
Ma et al., Science. 2022.
https://www.doi.org/10.1126/science.abo7257
The dorsolateral prefrontal cortex (dlPFC) exists only in primates, lies at the center of high-order cognition, and is a locus of pathology underlying many neuropsychiatric diseases. The investigators generated single-nucleus transcriptome data profiling more than 600,000 nuclei from the dlPFC of adult humans, chimpanzees, rhesus macaques, and common marmosets of both sexes. Postmortem human samples were obtained from tissue donors. The investigators’ analyses delineated dlPFC cell-type homology and transcriptomic conservation across species and identified species divergence at the molecular and cellular levels, as well as potential epigenomic mechanisms underlying these differences. Expression patterns of more than 900 genes associated with brain disorders revealed a variety of conserved, divergent, and group-specific patterns. The resulting data resource will help to vertically integrate marmoset and macaque models with human-focused efforts to develop treatments for neuropsychiatric conditions. Supported by ORIP (P51OD011133), NIA, NICHD, NIDA, NIGMS, NHGRI, NIMH, and NINDS.
Rbbp4 Loss Disrupts Neural Progenitor Cell Cycle Regulation Independent of Rb and Leads to Tp53 Acetylation and Apoptosis
Schultz-Rogers et al., Developmental Dynamics. 2022.
https://www.doi.org/10.1002/dvdy.467
Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression by cooperating with the Rb tumor suppressor to block cell cycle entry. The authors used genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers, and it is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. Rbbp4; Rb1 double mutants show an additive effect on the number of M phase cells. The study demonstrates that Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0, independent of Rb, and suggests that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival. Supported by ORIP (R24OD020166) and NIGMS.
Evolution of the Nitric Oxide Synthase Family in Vertebrates and Novel Insights in Gill Development
Annona et al., Proceedings of the Royal Society B. 2022.
https://www.doi.org/10.1098/rspb.2022.0667
Nitric oxide (NO) plays essential roles in biological systems, including cardiovascular homeostasis, neurotransmission, and immunity. Knowledge of NO synthases (NOS) is substantial, but the origin of nos gene orthologues in fishes, with respect to tetrapods, remains largely unknown. The recent identification of nos3 in the spotted gar, considered lost in this lineage, prompted the authors to explore nos gene evolution. Here, they report that nos2 experienced several lineage-specific gene duplications and losses. Additionally, nos3 was found to be lost independently in two teleost lineages, Elopomorpha and Clupeocephala. Further, the expression of at least one nos paralogue in gills of developing shark, bichir, sturgeon, and gar, but not in gills of lamprey, suggests nos expression in the gill might have arisen in the last common ancestor of gnathostomes. These results provide a framework for further research on the role of nos genes. Supported by ORIP (P40OD019794, R01OD011116).
A Novel DPH5-Related Diphthamide-Deficiency Syndrome Causing Embryonic Lethality or Profound Neurodevelopmental Disorder
Shankar et al., Genetics in Medicine. 2022.
https://www.doi.org/10.1016/j.gim.2022.03.014
Neurodevelopmental disorders (NDDs) affect more than 3% of the pediatric population and often have associated neurologic or multisystem involvement. The underlying genetic etiology of NDDs remains unknown in many individuals. Investigators characterized the molecular basis of NDDs in children of both sexes with nonverbal NDDs from three unrelated families with distinct overlapping craniofacial features. The investigators also used a mouse model of both sexes to determine the pathogenicity of variants of uncertain significance, as well as genes of uncertain significance, to advance translational genomics and provide precision health care. They identified several variants in DPH5 as a potential cause of profound NDD. Their findings provide strong clinical, biochemical, and functional evidence for DPH5 variants as a novel cause of embryonic lethality or profound NDD with multisystem involvement. Based on these findings, the authors propose that “DPH5-related diphthamide deficiency syndrome” is a novel autosomal-recessive Mendelian disorder. Supported by ORIP (K01OD026608, U42OD012210) and NHGRI.
Neuroinflammatory Profiling in SIV-Infected Chinese-Origin Rhesus Macaques on Antiretroviral Therapy
Solis-Leal et al., Viruses. 2022.
https://www.doi.org/10.3390/v14010139
The central nervous system (CNS) HIV reservoir contributes to residual neuroimmune activation, which can lead to HIV-associated neurocognitive disorder. Researchers characterized the expression of signaling molecules associated with inflammation in plasma, cerebrospinal fluid, and basal ganglia of Chinese-origin rhesus macaques (sex not specified) with simian immunodeficiency virus (SIV). They reported a correlation between levels of CCL2 in plasma and cerebrospinal fluid, suggesting that researchers could infer the degree of CNS inflammation by testing CCL2 levels in peripheral blood. Overall, these findings provide insight into neuroinflammation and signaling associated with HIV persistence in the CNS. Supported by ORIP (P51OD011104, P51OD011133), NIMH, and NINDS.
AAV Capsid Variants with Brain-Wide Transgene Expression and Decreased Liver Targeting After Intravenous Delivery in Mouse and Marmoset
Goertsen et al., Nature Neuroscience. 2021.
https://www.nature.com/articles/s41593-021-00969-4
Genetic intervention is increasingly being explored as a therapeutic option for debilitating disorders of the central nervous system (CNS). This project focused on organ-specific targeting of adeno-associated virus (AAV) capsids after intravenous delivery. These results constitute an important step forward toward achieving the goal of engineered AAV vectors that can be used to broadly deliver gene therapies to the CNS in humans. Supported by ORIP (U24OD026638), NIMH, and NINDS.
A Novel Non-Human Primate Model of Pelizaeus-Merzbacher Disease
Sherman et al., Neurobiology of Disease. 2021.
https://www.sciencedirect.com/science/article/pii/S096999612100214X
Pelizaeus-Merzbacher disease (PMD) in humans is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Investigators report on three spontaneous cases of male neonatal rhesus macaques (RMs) with clinical symptoms of hypomyelinating disease. Genetic analysis revealed that the parents of these related RMs carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These RMs represent the first reported NHP model of PMD, providing an opportunity for studies to promote myelination in pediatric hypomyelinating diseases, as other animal models for PMD do not fully mimic the human disorder. Supported by ORIP (R24OD021324, P51OD011092, and S10OD025002) and NINDS.
Neuropeptide S Receptor 1 is a Nonhormonal Treatment Target in Endometriosis
Tapmeier et al., Science Translational Medicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34433639
Investigators analyzed genetic sequences of humans (n=32 families) and pedigree rhesus macaques (n=849) with spontaneous endometriosis to uncover potential targets for treatment. Target associations indicated a common insertion/deletion variant in NPSR1, the gene encoding neuropeptide S receptor 1. Immunocytochemistry, RT-PCR, and flow cytometry experiments indicated NPSR1 was expressed in the glandular epithelium of eutopic and ectopic endometrium. In a mouse model for endometriosis, an inhibitor of NPSR1-mediated signaling blocked proinflammatory TNFα release, monocyte chemotaxis, and inflammatory cell infiltrate. Further studies in nonhuman primates are needed; however, these results provide support for a nonhormonal treatment of endometriosis. Supported by ORIP (R24OD011173, P51OD011106).