Selected Grantee Publications
- Clear All
- 5 results found
- Neurological
- T32
Peripherally Mediated Opioid Combination Therapy in Mouse and Pig
Peterson et al., The Journal of Pain. 2025.
https://pubmed.ncbi.nlm.nih.gov/39542192
This study evaluates novel opioid combinations for pain relief with reduced side effects. Researchers investigated loperamide (a μ-opioid agonist) with either oxymorphindole or N‑benzyl-oxymorphindole—both δ-opioid receptor partial agonists—in mice (male and female) and pigs (male). These combinations produced synergistic analgesia across species without causing adverse effects or respiratory depression. The therapies significantly reduced hypersensitivity in post-injury models, outperforming morphine alone. These findings suggest that peripherally acting opioid combinations can offer effective, safer alternatives for pain management, potentially lowering opioid misuse and side effects. This approach could improve clinical strategies for treating chronic and acute pain with limited central opioid exposure. Supported by ORIP (T32OD010993), NHLBI, and NIDA.
A Switch from Glial to Neuronal Gene Expression Alterations in the Spinal Cord of SIV-Infected Macaques on Antiretroviral Therapy
Mulka et al., Journal of Neuroimmune Pharmacology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38862787/
Up to one-third of patients with HIV experience HIV-associated peripheral neuropathy, affecting sensory pathways in the spinal cord. Spinal cord sampling is limited in people with HIV. Researchers examined gene expression alterations in the spinal cords of simian immunodeficiency virus (SIV)-infected male pigtail macaques with and without antiretroviral therapy (ART), using RNA sequencing at key time points throughout infection. Results indicate a shift from glial cell-associated pathways to neuronal pathways in SIV-infected animals receiving ART. These findings suggest that neurons, rather than glia, are predominantly involved in ART-related neurotoxicity and offer new insights into therapeutic strategies for maintaining synaptic homeostasis. Supported by ORIP (U42OD013117, T32OD011089) and NINDS.
SIV-Specific Antibodies Protect Against Inflammasome-Driven Encephalitis in Untreated Macaques
Castell et al., Cell Reports. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11552693
Viral infections are the most common infectious cause of encephalitis, and simian immunodeficiency virus (SIV)–infected macaques are a well-established model for HIV. Researchers investigated the protective effects of SIV-specific antibodies against inflammation-driven encephalitis in using untreated, SIV-infected, male and female pigtail and rhesus macaques. Findings indicate that these antibodies reduce neuroinflammation and encephalitis, highlighting the importance of antibodies in controlling neuroimmune responses, especially in the absence of antiretroviral therapy. This study provides insight into immune-modulatory approaches to combating inflammation-driven encephalopathies. Supported by ORIP (U42OD013117, T32OD011089), NIDA, NHLBI, NIAID, NINDS, and NIMH.
Interferon Regulatory Factor 7 Modulates Virus Clearance and Immune Responses to Alphavirus Encephalomyelitis
Troisi et al., Journal of Virology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37772825/
Interferon regulatory factor 7 (IRF7)–deficient mice develop fatal paralysis after CNS infection with Sindbis virus, while wild-type mice recover. Irf7-/- mice produce low levels of IFN-α but high levels of IFN-β with induction of IFN-stimulated genes, so the reason for this difference is not understood. The current study shows that Irf7-/- mice developed inflammation earlier but failed to clear virus from motor neuron–rich regions of the brainstem and spinal cord. Therefore, IRF7 is either necessary for the neuronal response to currently identified mediators of clearance or enables the production of additional antiviral factor(s) needed for clearance. Supported by ORIP (T32OD011089, R01OD01026529) NINDS, and NIAID.
Innate Lymphoid Cells and Interferons Limit Neurologic and Articular Complications of Brucellosis
Moley et al., American Journal of Pathology. 2023.
https://www.sciencedirect.com/science/article/pii/S0002944023001980?via%3Dihub=
Brucellosis is a globally significant zoonotic disease. The current study investigated the role of innate lymphoid cells (ILCs) in the pathogenesis of focal brucellosis caused by Brucella melitensis. Following pulmonary infection with B. melitensis, mice lacking adaptive immune cells and ILCs developed arthritis, neurologic complications, and meningitis. Transcriptional analysis of Brucella-infected brains revealed marked upregulation of genes associated with inflammation and interferon responses. Collectively, these findings indicate that ILCs and interferons play an important role in prevention of focal complications during Brucella infection and that mice with deficiencies in ILCs or interferons can be used to study pathogenesis of neurobrucellosis. Supported by ORIP (T32OD011126) and NIAID.