Selected Grantee Publications
- Clear All
- 357 results found
- Immunology
- Neurological
Maternal Western-Style Diet Reduces Social Engagement and Increases Idiosyncratic Behavior in Japanese Macaque Offspring
Mitchell et al., Brain, Behavior, and Immunity. 2022.
https://www.doi.org/10.1016/j.bbi.2022.07.004
Evidence points to an association between maternal obesity and risk of early-emerging neurodevelopmental disorders in offspring, yet few preclinical studies have tested for associations between maternal Western-style diet (mWSD) and offspring behavior. Using Japanese macaques, researchers found that mWSD offspring exhibited less proximity to peers and initiated fewer affiliative social behaviors. These outcomes appear to be mediated by increased maternal interleukin-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin. These findings suggest specific prevention and intervention targets for early-emerging neurodevelopmental disorder in humans. Supported by ORIP (P51OD011092), NIMH, and NICHD.
De Novo Variants in EMC1 Lead to Neurodevelopmental Delay and Cerebellar Degeneration and Affect Glial Function in Drosophila
Chung et al., Human Molecular Genetics. 2022.
https://www.doi.org/10.1093/hmg/ddac053
Variants in EMC1, which encodes a subunit of the endoplasmic reticulum (ER)–membrane protein complex (EMC), are associated with developmental delay in children. Functional consequences of these variants are poorly understood. The investigators identified de novo variants in EMC1 in three children affected by global developmental delay, hypotonia, seizures, visual impairment, and cerebellar atrophy. They demonstrated in Drosophila that these variants are loss-of-function alleles and lead to lethality when expressed in glia but not in neurons. This work suggests the causality of EMC variants in disease. Supported by ORIP (R24OD022005, R24OD031447), NINDS, and NICHD.
Molecular Insights Into Antibody-Mediated Protection Against the Prototypic Simian Immunodeficiency Virus
Zhao et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-32783-2
Most simian immunodeficiency virus (SIV) vaccines have focused on inducing T cell responses alone or in combination with non-neutralizing antibody responses. To date, studies investigating neutralizing antibody (nAb) responses to protect against SIV have been limited. In this study, researchers isolated 12 potent monoclonal nAbs from chronically infected rhesus macaques of both sexes and mapped their binding specificities on the envelope trimer structure. They further characterized the structures using cryogenic electron microscopy, mass spectrometry, and computational modeling. Their findings indicate that, in the case of humoral immunity, nAb activity is necessary and sufficient for protection against SIV challenge. This work provides structural insights for future vaccine design. Supported by ORIP (P51OD011106), NIAID, and NCI.
Lesion Environments Direct Transplanted Neural Progenitors Towards a Wound Repair Astroglial Phenotype in Mice
O’Shea et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33382-x
Neural progenitor cells (NPCs) are potential cell transplantation therapies for central nervous system (CNS) injuries. Investigators derived NPCs expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling. Their findings reveal similarities between the transcriptional profiles, cellular morphologies, and functional features of cells transplanted into subacute CNS lesions and host astroglia. The astroglia are stimulated by injuries to proliferate and adopt a naturally occurring, border-forming wound repair phenotype in mice of both sexes. Understanding the autonomous cues instructing NPCs transplanted in CNS host tissue will be fundamental to therapeutic NPC transplantation. Supported by ORIP (U42OD010921,U42OD011174, UM1OD023222) and NINDS.
Molecular and Cellular Evolution of the Primate Dorsolateral Prefrontal Cortex
Ma et al., Science. 2022.
https://www.doi.org/10.1126/science.abo7257
The dorsolateral prefrontal cortex (dlPFC) exists only in primates, lies at the center of high-order cognition, and is a locus of pathology underlying many neuropsychiatric diseases. The investigators generated single-nucleus transcriptome data profiling more than 600,000 nuclei from the dlPFC of adult humans, chimpanzees, rhesus macaques, and common marmosets of both sexes. Postmortem human samples were obtained from tissue donors. The investigators’ analyses delineated dlPFC cell-type homology and transcriptomic conservation across species and identified species divergence at the molecular and cellular levels, as well as potential epigenomic mechanisms underlying these differences. Expression patterns of more than 900 genes associated with brain disorders revealed a variety of conserved, divergent, and group-specific patterns. The resulting data resource will help to vertically integrate marmoset and macaque models with human-focused efforts to develop treatments for neuropsychiatric conditions. Supported by ORIP (P51OD011133), NIA, NICHD, NIDA, NIGMS, NHGRI, NIMH, and NINDS.
Isoniazid and Rifapentine Treatment Effectively Reduces Persistent M. tuberculosis Infection in Macaque Lungs
Sharan et al., Journal of Clinical Investigation. 2022.
https://www.doi.org/10.1172/JCI161564
People with HIV and asymptomatic latent tuberculosis (TB) coinfection are at risk of developing active TB symptoms. The Centers for Disease Control and Prevention recommends a weekly dose of isoniazid and rifapentine for 3 months (3HP) for treatment of latent TB infection, but the sterilizing efficacy of the regimen has not been demonstrated previously. Using rhesus macaques of both sexes, researchers evaluated the efficacy of the 3HP regimen in eradicating persistent Mycobacterium tuberculosis infection. They found that treatment reduced the risk of developing active TB but did not establish complete sterilization. This work establishes a new animal model for evaluating the efficacy of different drug regimens. Supported by ORIP (P51OD011133, S10OD028732).
Wastewater Sequencing Reveals Early Cryptic SARS-CoV-2 Variant Transmission
Karthikeyan et al., Nature. 2022.
https://www.doi.org/10.1038/s41586-022-05049-6
The investigators explored the use of SARS-CoV-2 RNA concentration in wastewater as a practical approach to estimate community prevalence of COVID-19, detect emerging variants, and track regional infection dynamics. Two obstacles must be overcome to leverage wastewater-based genomic surveillance: low-quality sequence data and inability to estimate relative lineage abundance in mixed samples. The investigators developed and deployed improved virus concentration protocols and deconvolution software to fully resolve multiple virus strains from wastewater. Results indicate that emerging variants of concern were detected up to 14 days earlier in wastewater samples, and multiple instances of virus spread that were not captured by clinical genomic surveillance were identified by wastewater-based genomic surveillance. The study provides a scalable solution for wastewater genomic surveillance that allows early detection of SARS-CoV-2 variants and identification of cryptic transmission. The work suggests a critical, urgently needed methodology for early detection of emerging variants and early public health interventions. Supported by ORIP (S10OD026929), and NIAID.
A Molecularly Integrated Amygdalo-Fronto-Striatal Network Coordinates Flexible Learning and Memory
Li et al., Nature Neuroscience. 2022.
https://www.doi.org/10.1038/s41593-022-01148-9
Behavioral flexibility is critical for navigating dynamic environments and requires the durable encoding and retrieval of new memories to guide future choice. The orbitofrontal cortex (OFC) supports outcome-guided behaviors, but the coordinated neural circuitry and cellular mechanisms by which OFC connections sustain flexible learning and memory are not understood fully. Using a mouse model, researchers demonstrated that the OFC neuronal ensembles store a memory trace for newly learned information. They describe the directional transmission of information within an integrated amygdalo-fronto-striatal circuit across time. Supported by ORIP (P51OD011132), NIDA, NIMH, and NINDS.
Rbbp4 Loss Disrupts Neural Progenitor Cell Cycle Regulation Independent of Rb and Leads to Tp53 Acetylation and Apoptosis
Schultz-Rogers et al., Developmental Dynamics. 2022.
https://www.doi.org/10.1002/dvdy.467
Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression by cooperating with the Rb tumor suppressor to block cell cycle entry. The authors used genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers, and it is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. Rbbp4; Rb1 double mutants show an additive effect on the number of M phase cells. The study demonstrates that Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0, independent of Rb, and suggests that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival. Supported by ORIP (R24OD020166) and NIGMS.
Evolution of the Nitric Oxide Synthase Family in Vertebrates and Novel Insights in Gill Development
Annona et al., Proceedings of the Royal Society B. 2022.
https://www.doi.org/10.1098/rspb.2022.0667
Nitric oxide (NO) plays essential roles in biological systems, including cardiovascular homeostasis, neurotransmission, and immunity. Knowledge of NO synthases (NOS) is substantial, but the origin of nos gene orthologues in fishes, with respect to tetrapods, remains largely unknown. The recent identification of nos3 in the spotted gar, considered lost in this lineage, prompted the authors to explore nos gene evolution. Here, they report that nos2 experienced several lineage-specific gene duplications and losses. Additionally, nos3 was found to be lost independently in two teleost lineages, Elopomorpha and Clupeocephala. Further, the expression of at least one nos paralogue in gills of developing shark, bichir, sturgeon, and gar, but not in gills of lamprey, suggests nos expression in the gill might have arisen in the last common ancestor of gnathostomes. These results provide a framework for further research on the role of nos genes. Supported by ORIP (P40OD019794, R01OD011116).