Selected Grantee Publications
- Clear All
- 247 results found
- HIV/AIDS
- Neurological
Psychosocial Stress Alters the Immune Response and Results in Higher Viral Load During Acute SIV Infection in a Pigtailed Macaque Model of HIV
Guerrero-Martin et al., Journal of Infectious Diseases. 2021.
https://doi.org/10.1093/infdis/jiab252
Social distancing is an important countermeasure for a pandemic, but social isolation may also have adverse health outcomes in the context of infectious diseases, such as HIV. Researchers compared commonly measured parameters of HIV progression between singly and socially housed simian immunodeficiency virus (SIV)-infected pigtailed macaques. Throughout acute SIV infection, singly housed pigtailed macaques had a higher viral load in the plasma and cerebrospinal fluid and demonstrated greater CD4+ T cell declines and more CD4+ and CD8+ T cell activation compared to socially housed macaques. These findings suggest that psychosocial stress could augment the progression of HIV infection. Supported by ORIP (U42OD013117, P40OD013117, K01OD018244), NIAID, NINDS, and NIMH.
Combining In Vivo Corneal Confocal Microscopy With Deep Learning-Based Analysis Reveals Sensory Nerve Fiber Loss in Acute Simian Immunodeficiency Virus Infection
McCarron et al., Cornea. 2021.
https://doi.org/10.1097/ICO.0000000000002661
Researchers characterized corneal subbasal nerve plexus features of normal and simian immunodeficiency virus (SIV)-infected pigtail and rhesus macaques using in vivo confocal microscopy and a deep learning approach for automated assessments. Corneal nerve fiber length and fractal dimension measurements did not differ between species, but pigtail macaques had significantly higher baseline corneal nerve fiber tortuosity than rhesus macaques. Acute SIV infection induced decreased corneal nerve fiber length and fractal dimension in the pigtail macaque model for HIV. Adapting deep learning analyses to clinical corneal nerve assessments will improve monitoring of small sensory nerve fiber damage in numerous clinical contexts, including HIV. Supported by ORIP (U42OD013117) and NINDS.
MRI Characteristics of Japanese Macaque Encephalomyelitis (JME): Comparison to Human Diseases
Tagge et al., Journal of Neuroimaging. 2021.
https://onlinelibrary.wiley.com/doi/10.1111/jon.12868
Magnetic resonance imaging data (MRI) were obtained from 114 Japanese macaques, including 30 animals of both sexes that presented with neurological signs of Japanese macaque encephalomyelitis (JME). Quantitative estimates of blood-brain barrier permeability to gadolinium-based-contrast agent (GBCA) were obtained in acute, GBCA-enhancing lesions, and longitudinal imaging data were acquired for 15 JME animals. Intense, focal neuroinflammation was a key MRI finding in JME. Several features of JME compare directly to human inflammatory demyelinating diseases. The development and validation of noninvasive imaging biomarkers in JME provides the potential to improve diagnostic specificity and contribute to the understanding of human demyelinating diseases. Supported by ORIP (P51OD011092, S10OD018224), NINDS, and NIBIB.
Modulation of MHC-E Transport by Viral Decoy Ligands Is Required for RhCMV/SIV Vaccine Efficacy
Verweij et al., Science. 2021.
https://doi.org/10.1126/science.abe9233
Rhesus cytomegalovirus (RhCMV) strain 68-1-vectored simian immunodeficiency virus (SIV) vaccines elicit strong CD8+ T cell responses that can clear SIV infections. Peptides targeted by these T cells are presented on major histocompatibility complex (MHC) II and MHC-E rather than MHC-Ia. Researchers showed that VL9 drives intracellular transport of MHC-E and recognition of RhCMV-infected targets by MHC-E-restricted CD8+ T cells. Specific-pathogen-free (SPF) rhesus macaques vaccinated with a mutant 68-1 RhCMV lacking VL9 showed no priming of MHC-E-restricted CD8+ T cells and no protection against SIV, suggesting that future effective CMV-based HIV vaccines will require MHC-E-restricted CD8+ T cell priming. Supported by ORIP (U42OD023038, P51OD011092), NIAID, and NCI.
Evidence in Primates Supporting the Use of Chemogenetics for the Treatment of Human Refractory Neuropsychiatric Disorders
Roseboom et al., Molecular Therapy. 2021.
https://doi.org/10.1016/j.ymthe.2021.04.021
A rhesus macaque model for pathological anxiety was used to investigate the feasibility of decreasing anxiety using chemogenetics, known as DREADDs (designer receptors exclusively activated by designer drugs), to reduce amygdala neuronal activity. A low-dose clozapine administration strategy was developed to induce DREADD-mediated amygdala inhibition. Compared to controls, clozapine selectively decreased anxiety-related freezing behavior in the human intruder paradigm in the chemogentic monkeys, while coo vocalizations and locomotion were unaffected. These results are an important step in establishing chemogenetic strategies for patients with refractory neuropsychiatric disorders in which amygdala alterations are central to disease pathophysiology. Supported by ORIP (P51OD011106), NIMH, and NICHD.
The High Affinity Dopamine D2 Receptor Agonist MCL-536: A New Tool for Studying Dopaminergic Contribution to Neurological Disorders
Subburaju et al., ACS Chemical Neuroscience. 2021.
https://pubs.acs.org/doi/full/10.1021/acschemneuro.1c00094
The dopamine D2 receptor exists in two different states, D2high and D2low; the former is the functional form of the D2 receptor and associates with intracellular G-proteins. The D2 agonist [3H]MCL-536 has high affinity for the D2 receptor (Kd 0.8 nM) and potently displaces the binding of (R-(-)-N-n-propylnorapomorphine (NPA; Ki 0.16 nM) and raclopride (Ki 0.9 nM) in competition binding assays. The authors characterized [3H]MCL-536. [3H]MCL-536 as metabolically stable. In vitro autoradiography on transaxial and coronal brain sections showed specific binding of [3H]MCL-536. [3H]MCL-536's unique properties make it a valuable tool for research on neurological disorders like Parkinson's disease or schizophrenia. Supported by ORIP (R43OD020186, R44OD024615) and NIMH.
Bilateral Visual Projections Exist in Non-Teleost Bony Fish and Predate the Emergence of Tetrapods
Vigouroux et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/33833117/
In most vertebrates, camera-style eyes contain retinal ganglion cell neurons that project to visual centers on both sides of the brain. However, in fish, ganglion cells were thought to innervate only the contralateral side, suggesting that bilateral visual projections appeared in tetrapods. Here, Vigouroux et al. showed that bilateral visual projections exist in non-teleost fishes and that the appearance of ipsilateral projections does not correlate with terrestrial transition or predatory behavior. However, overexpression of human ZIC2 induces ipsilateral visual projections in zebrafish. Therefore, the existence of bilateral visual projections likely preceded the emergence of binocular vision in tetrapods. Supported by ORIP (R01OD011116).
Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence
Casalia et al., Journal of Neuroscience. 2021.
https://pubmed.ncbi.nlm.nih.gov/33637558/
The authors report that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents. Their findings reveal that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies. They demonstrate that porcine medial ganglionic eminence exhibits a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity, and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in monkeys and humans), their work allows direct neurodevelopmental comparisons with this literature. Supported by ORIP (U42OD011140) and NINDS.
Cytomegaloviral Determinants of CD8+ T Cell Programming and RhCMV/SIV Vaccine Efficacy
Malouli et al., Science Immunology. 2021.
https://www.science.org/doi/10.1126/sciimmunol.abg5413
Cytomegalovirus (CMV)-based vaccine vectors were developed to leverage the ability of CMVs to elicit sustained CD4+ and CD8+ T cell responses with broad tissue distribution. The 68-1 rhesus cytomegalovirus (RhCMV) vectors that express simian immunodeficiency virus (SIV) inserts induce major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+T cell responses. The contribution of this unconventional MHC restriction to RhCMV/SIV vaccine efficacy are poorly understood. Researchers demonstrated that these responses result from genetic rearrangements in 68-1 RhCMV that disrupt the function of eight immunomodulatory proteins encoded by the virus. Repair of each of these genes with either RhCMV or human CMV counterparts shifted responses to MHC-Ia-restricted, or MHC-Ia- and MHC-II-restricted, CD8 T cell responses, but repairing the RhCMV genes did not protect against SIV. These findings suggest that MHC-E-restricted CD8+ T cell responses may be critical to protection against SIV. Supported by ORIP (U42OD023038, P51OD011092).
A Novel Tau-Based Rhesus Monkey Model of Alzheimer’s Pathogenesis
Beckman et al., Alzheimer’s & Dementia. 2021.
https://pubmed.ncbi.nlm.nih.gov/33734581/
Alzheimer’s disease (AD) is becoming more prevalent as the population ages, but there are no effective treatments for this devastating condition. Researchers developed a rhesus monkey model of AD by targeting the entorhinal cortex with an adeno-associated virus expressing mutant tau protein. Within 3 months they observed evidence of misfolded tau propagation, similar to what is hypothesized for AD patients. Treated monkeys developed robust alterations in AD core biomarkers in cerebrospinal fluid and blood. These results highlight the initial stages of tau seeding and propagation in rhesus macaques, a potentially powerful translational model with which to test new AD therapies. Supported by ORIP (P51OD011107) and NIA.
 
         
    
