Selected Grantee Publications
- Clear All
- 247 results found
- HIV/AIDS
- Neurological
Effect of Passive Administration of Monoclonal Antibodies Recognizing Simian Immunodeficiency Virus (SIV) V2 in CH59-Like Coil/Helical or β-Sheet Conformations on Time of SIVmac251 Acquisition
Stamos et al., Journal of Virology. 2023.
https://journals.asm.org/doi/10.1128/jvi.01864-22
Research suggests that the SIV variable region 2 (V2) is a region of virus vulnerability, likely because of its exposure on the apex of virions and on the surfaces of SIV-infected cells. Researchers examined the effects of two monoclonal antibodies, NCI05 and NCI09, on the acquisition of SIV using rhesus macaques (sex not specified). They found that NCI05, but not NCI09, delays SIV acquisition, highlighting the complexity of antibody responses to V2. Both antibodies were unable to decrease the risk of viral acquisition. This study demonstrates that such antibodies as NCI05 alone are insufficient to protect against SIV acquisition. Supported by ORIP (S10OD027000), NIAID, and NCI.
In Vivo MRI Is Sensitive to Remyelination in a Nonhuman Primate Model of Multiple Sclerosis
Donadieu et al., eLife. 2023.
https://pubmed.ncbi.nlm.nih.gov/37083540/
Experimental autoimmune encephalomyelitis (EAE) in the common marmoset is a model for studying inflammatory demyelination in multiple sclerosis (MS). Researchers investigated the feasibility and sensitivity of magnetic resonance imaging (MRI) in characterizing remyelination, a crucial step to recover from MS. Investigators demonstrated that multisequence 7T MRI could detect spontaneous remyelination in marmoset EAE at high statistical sensitivity and specificity in vivo. This study suggests that in vivo MRI can be used for preclinical testing of therapeutic remyelinating agents for MS. Supported by ORIP (R21OD030163) and NINDS.
Cerebrospinal Fluid Protein Markers Indicate Neuro-Damage in SARS-CoV-2-Infected Nonhuman Primates
Maity et al., Molecular & Cellular Proteomics. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981268/
In this study, researchers examined the proteins expressed in cerebrospinal fluid (CSF) in nonhuman primates (NHPs) to better understand how COVID-19 infection can result in brain pathology, a common outcome. The study found that even in NHPs with minimal or mild COVID‑19, CSF proteins were significantly dysregulated compared with uninfected NHPs. Furthermore, the most affected proteins were enriched in the same brain regions that show lesions after COVID-19 infection, including the cerebral cortex, basal ganglia, and brain stem. Collectively, these regions have wide-ranging control over such crucial functions as cognition, motor control, and breathing, showing how even mild COVID-19 infection can result in significant neurological impairment. Supported by ORIP (P51OD011104, S10OD032453), NIGMS, NCI, and NICHD.
Longitudinal Characterization of Circulating Extracellular Vesicles and Small RNA During Simian Immunodeficiency Virus Infection and Antiretroviral Therapy
Huang et al., AIDS. 2023.
https://www.doi.org/10.1097/QAD.0000000000003487
Antiretroviral therapy is effective for controlling HIV infection but does not fully prevent early aging disorders or serious non-AIDS events among people with HIV. Using pigtail and rhesus macaques (sex not specified), researchers profiled extracellular vesicle small RNAs during different phases of simian immunodeficiency virus infection to explore the potential relationship between extracellular vesicle–associated small RNAs and the infection process. They reported that average particle counts correlated with infection, but the trend could not be explained fully by virions. These findings raise new questions about the distribution of extracellular vesicle RNAs in HIV latent infection. Supported by ORIP (U42OD013117), NIDA, NIMH, NIAID, NCI, and NINDS.
Anti–Human Immunodeficiency Virus‑1 Activity of MoMo30 Protein Isolated from the Traditional African Medicinal Plant Momordica balsamina
Khan et al., Virology Journal. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10035133/
Momordica balsamina has been reported to produce a ribosome-inactivating protein with anti‑HIV-1 activity and is commonly used by traditional African healers for treatment of HIV. Investigators characterized the mechanism of action of the MoMo30 protein, as well as the sequence of the protein-coding gene. They reported that MoMo30 functions as a lectin or carbohydrate-binding agent (CBA) and inhibits HIV-1 at nanomolar levels, with minimal cellular toxicity at inhibitory levels. CBAs can block the binding of envelope glycoproteins with their target receptors on cells. Thus, this protein could represent a potential new treatment strategy for HIV. Supported by ORIP (R24OD010947), NCI, NIGMS, and NIMHD.
Late Gene Expression–Deficient Cytomegalovirus Vectors Elicit Conventional T Cells That Do Not Protect Against SIV
Hansen et al., Journal of Clinical Investigation Insight. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070102/
Cytomegalovirus (CMV)–based vaccines aim to exploit unique immunological adaptations, including host manipulation and immune evasion strategies. Translating CMV-based vaccines from rhesus macaques to humans requires translating the immune factors responsible for efficacy, as well as vaccine vectors that are sufficiently safe for widespread use. Researchers examined the impact of a stringent attenuation strategy on vector-induced immune protection against simian immunodeficiency virus (SIV) in rhesus macaques of both sexes. They reported that elicited CD8+ T cells exclusively failed to protect against SIV challenge. These data suggest that late viral gene expression and/or residual in vivo spreading are required to induce protective CD8+ T cell responses. Supported by ORIP (P51OD011092, P51OD011107, S10OD016261), NCI, NIAID, and NCATS.
Mechanism of STMN2 Cryptic Splice-Polyadenylation and its Correction for TDP-43 Proteinopathies
Baughn et al., Science. 2023.
Loss of the RNA-binding protein TDP-43 from the nuclei of affected neurons is a hallmark of neurodegeneration in TDP-43 proteinopathies (e.g., amyotrophic lateral sclerosis, frontotemporal dementia). Loss of functional TDP-43 is accompanied by misprocessing of the stathmin-2 (STMN2) RNA precursor. Investigators determined the elements through which TDP‑43 regulates STMN2 pre‑mRNA processing and identified steric binding antisense oligonucleotides that are capable of restoring normal STMN2 protein and RNA levels. This approach is potentially applicable for human therapy. Supported by ORIP (U42OD010921), NIA, NCI, NIGMS, and NINDS.
Chronic Immune Activation and Gut Barrier Dysfunction Is Associated with Neuroinflammation in ART-Suppressed SIV+ Rhesus Macaques
Byrnes et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10085024/
About 40% of people with HIV develop neurocognitive disorders, potentially resulting from persistent infection in the brain and neuroinflammation. Investigators characterized the central nervous system reservoir and immune environment of simian immunodeficiency virus (SIV)–infected rhesus macaques of both sexes during acute, chronic, or antiretroviral therapy (ART)–suppressed infection. They reported that neuroinflammation and blood–brain barrier dysfunction correlated with viremia and immune activation in the gut. Their findings suggest that gastrointestinal tract damage can contribute to neuroimmune activation and inflammation, even in the absence of SIV or HIV infection. This work also has implications for other neurological disorders where chronic inflammation is associated with pathogenesis. Supported by ORIP (P51OD011132, P51OD011092, U42OD011023, R24OD010445), NIAID, NCI, and NIMH.
In-Depth Virological and Immunological Characterization of HIV-1 Cure after CCR5A32/A32 Allogeneic Hematopoietic Stem Cell Transplantation
Jensen et al., Nature Medicine. 2023.
https://pubmed.ncbi.nlm.nih.gov/36807684/
Evidence suggests that CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) can cure HIV-1, but the immunological and virological correlates are unknown. Investigators performed a longitudinal virological and immunological analysis of the peripheral blood and tissue compartments of a 53-year-old male patient more than 9 years after CCR5Δ32/Δ32 allogeneic HSCT and 48 months after analytical treatment interruption. Sporadic traces of HIV-1 DNA were detected in peripheral T cell subsets and tissue-derived samples, but repeated ex vivo quantitative and in vivo outgrowth assays in humanized mice of both sexes did not reveal replication-competent virus. This case provides new insights that could guide future cure strategies. Supported by ORIP (P51OD011092) and NIAID.
Cannabinoids Modulate the Microbiota–Gut–Brain Axis in HIV/SIV Infection by Reducing Neuroinflammation and Dysbiosis while Concurrently Elevating Endocannabinoid and Indole-3-Propionate Levels
McDew-White et al., Journal of Neuroinflammation. 2023.
https://jneuroinflammation.biomedcentral.com/articles/10.1186/s12974-023-02729-6
Chronic neuroinflammation is thought to be a significant contributor to HIV-associated neurocognitive disorders. Using rhesus macaques of both sexes, researchers investigated the effects of simian immunodeficiency virus (SIV) infection on the microbiota–gut–brain axis (MGBA), as well as the use of low-dose cannabinoids to reverse MGBA dysregulation. They reported that tetrahydrocannabinol reduced neuroinflammation and dysbiosis and increased plasma endocannabinoid, endocannabinoid-like, glycerophospholipid, and indole-3-propionate levels. This study offers a potential strategy to promote brain health in people with HIV. Supported by ORIP (P51OD011104, P51OD011103), NIAID, and NIDA.

