Selected Grantee Publications
- Clear All
- 25 results found
- Rare Diseases
Commentary: The International Mouse Phenotyping Consortium: High-Throughput In Vivo Functional Annotation of the Mammalian Genome
Lloyd, Mammalian Genome. 2024.
https://pubmed.ncbi.nlm.nih.gov/39254744
The International Mouse Phenotyping Consortium (IMPC), a collectively governed consortium of 21 academic research institutions across 15 countries on 5 continents, represents a groundbreaking approach in genetics and biomedical research. Its goal is to create a comprehensive catalog of mammalian gene function that is freely available and equally accessible to the global research community. So far, the IMPC has uncovered the function of thousands of genes about which little was previously known. By 2027, when the current round of funding expires, the IMPC will have produced and phenotyped nearly 12,000 knockout mouse lines representing approximately 60% of the human orthologous genome in mice. This new knowledge has produced numerous insights about the role of genes in health and disease, including informing the genetic basis of rare diseases and positing gene product influences on common diseases. However, as IMPC nears the end of the current funding cycle, its path forward remains unclear. Supported by ORIP (UM1OD023221).
The Mutant Mouse Resource and Research Center (MMRRC) Consortium: The U.S.-Based Public Mouse Repository System
Agca et al., Mammalian Genome. 2024.
https://link.springer.com/article/10.1007/s00335-024-10070-3
The MMRRC has been the nation’s preeminent public repository and distribution archive of mutant mouse models for 25 years. The Consortium, with support from NIH, facilitates biomedical research by identifying, acquiring, evaluating, characterizing, preserving, and distributing a variety of mutant mouse strains to investigators around the world. Since its inception, the MMRRC has fulfilled more than 20,000 orders from 13,651 scientists at 8,441 institutions worldwide. Today, the MMRRC maintains an archive of mice, cryopreserved embryos and sperm, embryonic stem-cell lines, and murine monoclonal antibodies for nearly 65,000 alleles. The Consortium also provides scientific consultation, technical assistance, genetic assays, microbiome analysis, analytical phenotyping, pathology, husbandry, breeding and colony management, and more. Supported by ORIP (U42OD010918, U42OD010924, U42OD010983).
Systematic Multi-trait AAV Capsid Engineering for Efficient Gene Delivery
Eid et al., Nature Communications. 2024.
https://doi.org/10.1038/s41467-024-50555-y
Engineering novel functions into proteins while retaining desired traits is a key challenge for developers of viral vectors, antibodies, and inhibitors of medical and industrial value. In this study, investigators developed Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait adeno-associated virus (AAV) capsids. Fit4Function was used to generate reproducible screening data from a capsid library that samples the entire manufacturable sequence space. The Fit4Function data were used to train accurate sequence-to-function models, which were combined to develop a library of capsid candidates. Compared to AAV9, top candidates from the Fit4Function capsid library exhibited comparable production yields; more efficient murine liver transduction; up to 1,000-fold greater human hepatocyte transduction; and increased enrichment in a screen for liver transduction in macaques. The Fit4Function strategy enables prediction of peptide-modified AAV capsid traits across species and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Supported by ORIP (P51OD011107, U42OD027094), NIDDK, NIMH, and NINDS.
Intrinsic Link Between PGRN and GBA1 D409V Mutation Dosage in Potentiating Gaucher Disease
Lin et al., Human Molecular Genetics. 2024.
https://doi.org/10.1093/hmg/ddae113
Gaucher disease (GD) is an autosomal recessive disorder and one of the most common lysosomal storage diseases. GD is caused by mutations in the GBA1 gene that encodes glucocerebrosidase (GCase), a lysosomal protein involved in glyocolipid metabolism. Progranulin (PGRN, encoded by GRN) is a modifier of GCase, and GRN mutant mice exhibit a GD-like phenotype. The researchers in this study aimed to understand the relationship between GCase and PGRN. They generated a panel of mice with various doses of the GBA1 D409V mutation in the GRN-/- background and characterized the animals’ disease progression using biochemical, pathological, transcriptomic, and neurobehavioral analyses. Homozygous (GRN-/-, GBA1 D409V/D409V) and hemizygous (GRN-/-, GBA1 D409V/null) animals exhibited profound inflammation and neurodegeneration compared to PG96 wild-type mice. Compared to homozygous mice, hemizygous mice showed more profound phenotypes (e.g., earlier onset, increased tissue fibrosis, shorter life span). These findings offer insights into GD pathogenesis and indicate that GD severity is affected by GBA1 D409V dosage and the presence of PGRN. Supported by ORIP (R21OD033660) and NINDS.
Genetic Diversity of 1,845 Rhesus Macaques Improves Genetic Variation Interpretation and Identifies Disease Models
Wang et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49922-6
Nonhuman primates are ideal models for certain human diseases, including retinal and neurodevelopmental disorders. Using a reverse genetics approach, researchers profiled the genetic diversity of rhesus macaque populations across eight primate research centers in the United States and uncovered rhesus macaques carrying naturally occurring pathogenic mutations. They identified more than 47,000 single-nucleotide variants in 374 genes that had been previously linked with retinal and neurodevelopmental disorders in humans. These newly identified variants can be used to study human disease pathology and to test novel treatments. Supported by ORIP (P51OD011107, P51OD011106, P40OD012217, S10OD032189), NEI, NIAID, and NIMH.
Transcriptome- and Proteome-Wide Effects of a Circular RNA Encompassing Four Early Exons of the Spinal Muscular Atrophy Genes
Luo, Scientific Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/38714739/
Spinal muscular atrophy (SMA) is a leading genetic cause of mortality in infants and often results from a deficiency of deletions of or mutations in the SMN1 gene. In this study, researchers report the transcriptome- and proteome-wide effects of overexpression of C2A‑2B3-4, a circular RNA produced by SMN1 and SMN2, in cells. They report that C2A-2B-3-4 is associated with expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation, and neuromuscular junction formation. More work is needed to investigate the role of these genes in processes associated with SMA and other pathological conditions, including cancer and male infertility. Supported by ORIP (T35OD027967) and NINDS.
Identifying Potential Dietary Treatments for Inherited Metabolic Disorders Using Drosophila Nutrigenomics
Martelli et al., Cell Reports. 2024.
https://www.sciencedirect.com/science/article/pii/S221112472400189X?via%3Dihub=
Inherited metabolic disorders are known to cause severe neurological impairment and child mortality and can sometimes respond to dietary treatment; however, a suitable paradigm for testing diets is lacking for developing effective dietary treatment. In this study, researchers found that 26 of 35 Drosophila amino acid disorder models screened for disease–diet interactions displayed diet-altered development and/or survival. Among these models, researchers showed that dietary cysteine depletion normalizes metabolic profile and rescues development, neurophysiology, behavior, and life span in a model for isolated sulfite oxidase deficiency. These findings demonstrate the value of using Drosophila in studying diet-sensitive metabolic disorders and developing potential dietary therapies. Supported by ORIP (R24OD031447) and NHGRI.
De Novo Variants in FRYL Are Associated With Developmental Delay, Intellectual Disability, and Dysmorphic Features
Pan et al., The American Journal of Human Genetics. 2024.
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00039-9
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans, and its functions in mammals are largely unknown. Investigators report 13 individuals who have de novo heterozygous variants in FRYL and one individual with a heterozygous FRYL variant that is not confirmed to be de novo. The individuals present with developmental delay; intellectual disability; dysmorphic features; and other congenital anomalies in cardiovascular, skeletal, gastrointestinal, renal, and urogenital systems. Using fruit flies, investigators provide evidence that haploinsufficiency in FRYL likely underlies a disorder in humans with developmental and neurological symptoms. Supported by ORIP (U54OD030165), NHLBI, NICHD, and NCATS.
Prime Editing–Mediated Correction of the CFTR W1282X Mutation in iPSCs and Derived Airway Epithelial Cells
Li et al., PLOS ONE. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686454/
Cystic fibrosis (CF) is caused by recessive mutations in the CF transmembrane conductance regulator (CFTR) gene. Correction of nonsense CFTR mutations, which affects 10% of CF patients, via genomic editing represents a promising therapeutic approach. In this study, investigators tested whether prime editing can be applied as a potential therapeutic modality. Induced pluripotent stem cells (iPSCs) from a CF patient homozygous for the CFTR W1282X mutation were used. Studies demonstrated that prime editing corrected mutant allele in iPSCs, which effectively restored CFTR function in iPSC-derived airway epithelial cells and organoids. Supported by ORIP (R01OD01026594).
PIKFYVE Inhibition Mitigates Disease in Models of Diverse Forms of ALS
Hung et al., Cell . 2023.
https://doi.org/10.1016/j.cell.2023.01.005
Investigators showed that pharmacological suppression of PIKFYVE activity reduces pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of amyotrophic lateral sclerosis (ALS). Upon PIKFYVE inhibition, exocytosis is activated to transport aggregation-prone proteins out of the cells, a process that does not require stimulating macroautophagy or the ubiquitin-proteosome system. These findings suggest therapeutic potential to manage multiple forms of ALS. Supported by ORIP (S10OD021553) and NINDS.