Selected Grantee Publications
- Clear All
- 24 results found
- Pediatrics
- P51
Impaired Placental Hemodynamics and Function in a Non-Human Primate Model of Gestational Protein Restriction
Lo et al., Scientific Reports. 2023.
https://www.nature.com/articles/s41598-023-28051-y
Maternal malnutrition is a global health epidemic that adversely affects fetal outcomes and results in long-term health complications in children. Investigators used a previously developed model in nonhuman primates for gestational protein restriction to study the impact of undernutrition, specifically protein deficiency, on placental function and pregnancy outcomes. The data demonstrate that a 50% protein-restricted diet reduces maternal placental perfusion, decreases fetal oxygen availability, and increases fetal mortality. These alterations in placental hemodynamics could partly explain human growth restriction and stillbirth seen with severe protein restriction in developing countries. Supported by ORIP (P51OD011092) and NICHD.
Maternal Western-Style Diet Reduces Social Engagement and Increases Idiosyncratic Behavior in Japanese Macaque Offspring
Mitchell et al., Brain, Behavior, and Immunity. 2022.
https://www.doi.org/10.1016/j.bbi.2022.07.004
Evidence points to an association between maternal obesity and risk of early-emerging neurodevelopmental disorders in offspring, yet few preclinical studies have tested for associations between maternal Western-style diet (mWSD) and offspring behavior. Using Japanese macaques, researchers found that mWSD offspring exhibited less proximity to peers and initiated fewer affiliative social behaviors. These outcomes appear to be mediated by increased maternal interleukin-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin. These findings suggest specific prevention and intervention targets for early-emerging neurodevelopmental disorder in humans. Supported by ORIP (P51OD011092), NIMH, and NICHD.
Early Treatment Regimens Achieve Sustained Virologic Remission in Infant Macaques Infected with SIV at Birth
Wang et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-32554-z
About 150,000 children are infected postnatally with HIV each year. Early antiretroviral therapy (ART) in infants with HIV can reduce viral reservoir size, but ART-free virologic remission has not been achieved. The researchers hypothesized that proviral reservoir seeding in infants exposed to HIV might differ from that in adults. They characterized viral reservoirs in neonatal rhesus macaques of both sexes inoculated with simian immunodeficiency virus (SIV) at birth and given combination ART. The researchers reported that 9 months of treatment initiated at day 3 resulted in a sustained virologic remission, suggesting that early intervention with proper treatment regimens could be an effective strategy. Supported by ORIP (P51OD011104), NIAID, NICHD, and NIDCR.
Adverse Biobehavioral Effects in Infants Resulting from Pregnant Rhesus Macaques’ Exposure to Wildfire Smoke
Capitanio et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-29436-9
Exposure to wildfire smoke (WFS) is a growing health concern as wildfires increase in number and size due to climate change. Researchers found that developing rhesus monkeys exposed to WFS from the Camp Fire in California (November 2018) during the first third of gestation exhibited greater inflammation, blunted cortisol, more passive behavior, and memory impairment compared to animals conceived after smoke had dissipated. Analysis of a historical control cohort did not support the alternative hypothesis that conception timing alone explained the results. These findings suggest that WFS may have a teratogenic effect on neural development in the primate fetus. Supported by ORIP (P51OD011107, R24OD010962) and NIEHS.
Early Post-Vaccination Gene Signatures Correlate With the Magnitude and Function of Vaccine-Induced HIV Envelope–Specific Plasma Antibodies in Infant Rhesus Macaques
Vijayan et al., Frontiers in Immunology. 2022.
https://www.doi.org/10.3389/fimmu.2022.840976
An effective vaccine is needed to reduce HIV infections, particularly among younger people. The initiation of an HIV vaccine regimen in early life could allow the development of mature HIV‑specific antibody responses that protect against infection. The investigators compared the effects of two vaccine regimens in infant rhesus macaques (sex not specified). Both vaccines induced a rapid innate response, indicated by elevated inflammatory plasma cytokines and altered gene expression. By performing a network analysis, the investigators identified differentially expressed genes associated with B cell activation. These findings suggest that vaccine-induced immunity can be optimized by modulating specific antibody and T cell responses. Supported by ORIP (P51OD011107), NCI, NIAID, and NIDCR.
A Potent Myeloid Response Is Rapidly Activated in the Lungs of Premature Rhesus Macaques Exposed to Intra-Uterine Inflammation
Jackson et al., Mucosal Immunology. 2022.
https://www.doi.org/10.1038/s41385-022-00495-x
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which can lead to neonatal mortality, sepsis, respiratory disease, and neurodevelopmental problem. Researchers used rhesus macaques to comprehensively describe HCA-induced fetal mucosal immune responses and delineate the individual roles of IL-1β and TNFα in HCA-induced fetal pathology. Their data indicate that the fetal innate immune system can mount a rapid, multifaceted pulmonary immune response to in utero exposure to inflammation. Taken together, this work provides mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlights the therapeutic potential of inflammatory blockade in the fetus. Supported by ORIP (P51OD011107), NIEHS, NIDDK, NHLBI, and NICHD.
Heritability of Social Behavioral Phenotypes and Preliminary Associations with Autism Spectrum Disorder Risk Genes in Rhesus Macaques: A Whole Exome Sequencing Study
Gunter et al., Autism Research. 2022.
https://onlinelibrary.wiley.com/doi/full/10.1002/aur.2675
Investigators quantified individual variation in social interactions among juvenile rhesus macaques of both sexes using both a standard macaque ethogram (a catalogue of animal behavior over time) and a macaque-relevant modification of the human Social Responsiveness Scale to study genetic influences on key aspects of social behavior and interactions. The analyses demonstrate that various aspects of juvenile social behavior exhibit significant genetic heritability, with quantitative genetic effects similar to autism spectrum disorder (ASD) in human children. The significant genetic and sequencing data may be used to examine potential genetic associations with human ASD. Supported by ORIP (P51OD011132), NHGRI and NIMH.
Reduced Infant Rhesus Macaque Growth Rates Due to Environmental Enteric Dysfunction and Association with Histopathology in the Large Intestine
Hendrickson et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-021-27925-x
Researchers characterized environmental enteric (relating to the intestines) dysfunction (EED) among infant rhesus macaques (n=80, both sexes) naturally exposed to enteric pathogens commonly linked to human growth stunting. Despite atrophy and abnormalities observed in the small intestine, poor growth trajectories and low serum tryptophan (an amino acid needed for protein and enzymes) levels were correlated with increased histopathology (microscopic tissue examination for disease manifestation) in the large intestine. This study provides insight into the mechanisms underlying EED and indicates that the large intestine may be an important target for therapeutic intervention. Supported by ORIP (P51OD011092, P51OD011107) and NIGMS.
Dynamics and Origin of Rebound Viremia in SHIV-Infected Infant Macaques Following Interruption of Long-Term ART
Obregon-Perko et al., JCI Insight. 2021.
https://pubmed.ncbi.nlm.nih.gov/34699383/
Animal models that recapitulate human COVID-19 disease are critical for understanding SARS-CoV-2 viral and immune dynamics, mechanisms of disease, and testing of vaccines and therapeutics. A group of male pigtail macaques (PTMs) were euthanized either 6- or 21-days after SARS-CoV-2 viral challenge and demonstrated mild-to-moderate COVID-19 disease. Pulmonary infiltrates were dominated by T cells, virus-targeting T cells were predominantly CD4+, increases in circulating inflammatory and coagulation markers, pulmonary pathologic lesions, and the development of neutralizing antibodies were observed. Collectively, the data suggests PTMs are a valuable model to study COVID-19 pathogenesis and may be useful for testing vaccines and therapeutics. Supported by ORIP (P51OD011104) and NIAID.
A Novel Non-Human Primate Model of Pelizaeus-Merzbacher Disease
Sherman et al., Neurobiology of Disease. 2021.
https://www.sciencedirect.com/science/article/pii/S096999612100214X
Pelizaeus-Merzbacher disease (PMD) in humans is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Investigators report on three spontaneous cases of male neonatal rhesus macaques (RMs) with clinical symptoms of hypomyelinating disease. Genetic analysis revealed that the parents of these related RMs carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These RMs represent the first reported NHP model of PMD, providing an opportunity for studies to promote myelination in pediatric hypomyelinating diseases, as other animal models for PMD do not fully mimic the human disorder. Supported by ORIP (R24OD021324, P51OD011092, and S10OD025002) and NINDS.