Selected Grantee Publications
- Clear All
- 25 results found
- Women's Health
Infection of the Maternal–Fetal Interface and Vertical Transmission Following Low-Dose Inoculation of Pregnant Rhesus Macaques (Macaca mulatta) with an African-Lineage Zika Virus
Koenig et al., PLOS ONE. 2023.
https://doi.org/10.1371/journal.pone.0284964
Researchers examined transmission of Zika virus to nonhuman primate fetuses during pregnancy. Even with a low dosage of inoculation of the dams, the investigators found that the Zika virus infected fetuses, despite the presence of a “placental fortress,” which normally protects fetuses during gestation. This transmission illustrates the high level of infectivity threat that Zika poses, which may increase if mosquitoes expand their global habitats. Understanding how Zika breaches the placental barrier will help researchers develop strategies to prevent fetal infection during pregnancy and thereby prevent adverse outcomes, such as brain malformation defects. Supported by ORIP (P51OD011106, S10OD023526), NIAID, NCI, and NIGMS.
Association of Age at Menopause and Hormone Therapy Use With Tau and β-Amyloid Positron Emission Tomography
Coughlan et al., JAMA Neurology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37010830/
To understand the predominance (70%) of women among individuals with Alzheimer’s disease, the investigators studied regional tau and β-amyloid (Aβ) in relation to age at menopause and hormone therapy (HT) in postmenopausal women and age-matched men using positron emission tomography. The study demonstrated that females exhibited higher tau deposition compared with age-matched males, particularly in the setting of elevated Aβ; earlier age at menopause and late initiation of HT were associated with increased tau vulnerability. This study suggests female individuals with these conditions may be at higher risk of pathological burden. Supported by ORIP (S10OD025245), NIA, and NICHD.
Impaired Placental Hemodynamics and Function in a Non-Human Primate Model of Gestational Protein Restriction
Lo et al., Scientific Reports. 2023.
https://www.nature.com/articles/s41598-023-28051-y
Maternal malnutrition is a global health epidemic that adversely affects fetal outcomes and results in long-term health complications in children. Investigators used a previously developed model in nonhuman primates for gestational protein restriction to study the impact of undernutrition, specifically protein deficiency, on placental function and pregnancy outcomes. The data demonstrate that a 50% protein-restricted diet reduces maternal placental perfusion, decreases fetal oxygen availability, and increases fetal mortality. These alterations in placental hemodynamics could partly explain human growth restriction and stillbirth seen with severe protein restriction in developing countries. Supported by ORIP (P51OD011092) and NICHD.
Surrogate Biomarkers of Disease Progression in Human Pegivirus Seropositive Human Immunodeficiency Virus–Infected Individuals
Vimali et al., Viral Immunology. 2023.
Researchers have previously observed that human pegivirus (HPgV) infection is associated with reduced progression of HIV. Investigators examined markers of HIV progression in male and female individuals with HIV and HPgV infection. They reported that HIV plasma viral load was lower in HPgV-seropositive individuals with HIV than in HPgV‑seronegative individuals with HIV. They also found that clinical markers of hepatic damage were significantly lower in HPgV-seropositive individuals with HIV. Future work could examine pathways through which HPgV influences HIV control, which might inform the development of new therapeutics. Supported by ORIP (P51OD011132) and NIAID.
Maternal Western-Style Diet Reduces Social Engagement and Increases Idiosyncratic Behavior in Japanese Macaque Offspring
Mitchell et al., Brain, Behavior, and Immunity. 2022.
https://www.doi.org/10.1016/j.bbi.2022.07.004
Evidence points to an association between maternal obesity and risk of early-emerging neurodevelopmental disorders in offspring, yet few preclinical studies have tested for associations between maternal Western-style diet (mWSD) and offspring behavior. Using Japanese macaques, researchers found that mWSD offspring exhibited less proximity to peers and initiated fewer affiliative social behaviors. These outcomes appear to be mediated by increased maternal interleukin-12 during the third trimester of pregnancy. Additionally, mWSD offspring displayed increased idiosyncratic behavior, which was related to alterations in maternal adiposity and leptin. These findings suggest specific prevention and intervention targets for early-emerging neurodevelopmental disorder in humans. Supported by ORIP (P51OD011092), NIMH, and NICHD.
X Chromosome Agents of Sexual Differentiation
Arnold et al., Nature Reviews Endocrinology. 2022.
https://www.doi.org/10.1038/s41574-022-00697-0
Many diseases affect one sex disproportionately. A major goal of biomedical research is to understand which sex-biasing factors influence disease severity and to develop therapeutic strategies to target these factors. Two groups of such agents are sex chromosome genes and gonadal hormones. Researchers use the “four core genotypes” model to enable comparisons among animals with different sex chromosomes but the same type of sex hormones, which allows investigators to distinguish disease mechanisms influenced by the sex chromosomes. Supported by ORIP (R01OD030496, R21OD026560), NICHD, NIDDK, and NHLBI.
Stromal P53 Regulates Breast Cancer Development, the Immune Landscape, and Survival in an Oncogene-Specific Manner
Wu et al., Molecular Cancer Research. 2022.
https://www.doi.org/10.1158/1541-7786.MCR-21-0960
Loss of stromal p53 function drives tumor progression in breast cancer, but the exact mechanisms have been relatively unexplored. Using mouse models, researchers demonstrated that loss of cancer-associated fibroblast (CAF) p53 enhances carcinoma formation driven by oncogenic KRAS G12D, but not ERBB2, in mammary epithelia. These results corresponded with increased tumor cell proliferation and DNA damage, as well as decreased apoptosis, in the KRAS G12D model. Furthermore, a gene cluster associated with CAF p53 deficiency was found to associate negatively with survival in microarray and heat map analyses. These data indicate that stromal p53 loss promotes mammary tumorigenesis in an oncogene-specific manner, influences the tumor immune landscape, and ultimately affects patient survival. Supported by ORIP (K01OD026527) and NCI.
Common and Divergent Features of T Cells From Blood, Gut, and Genital Tract of Antiretroviral Therapy–Treated HIV+ Women
Xie et al., Journal of Immunology. 2022.
https://www.doi.org/10.4049/jimmunol.2101102
T cells residing in mucosal tissues play important roles in homeostasis and defense against microbial pathogens, but how organ system environments affect the properties of resident T cells is relatively unknown. Researchers phenotyped T cells in the gut and reproductive tract using blood and tissue samples from women with HIV who have achieved viral suppression via antiretroviral therapy. The T cells exhibited differing expression of CD69 and CD103 markers, whereas resident memory CD8+ T cells from the female reproductive tract expressed PD1 preferentially. Additionally, CXCR4+ T inflammatory mucosal cells expressed multiple chemokine receptors differentially. These results suggest that T cells take on distinct properties in different mucosal sites, which allows them to tailor activities to their surrounding milieu. This study offers important insights for reproductive medicine in women. Supported by ORIP (S10OD018040), NHLBI, NIAID, and NIDDK.
Antibody-Peptide Epitope Conjugates for Personalized Cancer Therapy
Zhang et al., Cancer Research. 2022.
https://pubmed.ncbi.nlm.nih.gov/34965933/
Antibody-peptide epitope conjugates (APEC) are a new class of modified antibody-drug conjugates that redirect T cell viral immunity against tumor cells. Investigators developed an experimental pipeline to create patient-specific APECs and identified new preclinical therapies for ovarian carcinoma. Based on functional assessment of viral peptide antigen responses to common viruses like cytomegalovirus in ovarian cancer patients, a library of 192 APECs with distinct protease cleavage sequences was created using the anti-epithelial cell adhesion molecule (EpCAM) antibody. The streamlined and systemic approach includes assessing APEC function in vivo using a new zebrafish xenograft platform that facilitates high-resolution single-cell imaging to assess therapy responses and then validating top candidates using traditional mouse xenograft studies and primary patient samples. This study develops a high-throughput preclinical platform to identify patient-specific antibody-peptide epitope conjugates that target cancer cells and demonstrates the potential of this immunotherapy approach for treating ovarian carcinoma. Supported by ORIP (R24OD016761).
Deciphering the Role of Mucosal Immune Responses and the Cervicovaginal Microbiome in Resistance to HIV Infection in HIV-Exposed Seronegative Women
Ponnan et al., Microbiology Spectrum. 2021.
https://journals.asm.org/doi/10.1128/Spectrum.00470-21
Identifying correlates of protection in HIV-exposed seronegative (HESN) individuals requires identification of HIV-specific local immune responses. Researchers performed a comprehensive investigation of the vaginal mucosa and cervicovaginal microbiome in HESN women. They found elevated antiviral cytokines, soluble immunoglobulins, activated NK cells, CXCR5+ CD8+ T cells, and T follicular helper cells in HESN women compared to HIV-unexposed healthy women. They also found greater bacterial diversity and increased abundance of Gardnerella species in the mucosa of HESN women. These findings suggest that the genital tract of HESN women contains innate immune factors, antiviral mediators, and T cell subsets that protect against HIV. Supported by ORIP (P51OD011132) and NIAID.