Selected Grantee Publications
- Clear All
- 64 results found
- COVID-19/Coronavirus
- Rare Diseases
Genetic Diversity of 1,845 Rhesus Macaques Improves Genetic Variation Interpretation and Identifies Disease Models
Wang et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49922-6
Nonhuman primates are ideal models for certain human diseases, including retinal and neurodevelopmental disorders. Using a reverse genetics approach, researchers profiled the genetic diversity of rhesus macaque populations across eight primate research centers in the United States and uncovered rhesus macaques carrying naturally occurring pathogenic mutations. They identified more than 47,000 single-nucleotide variants in 374 genes that had been previously linked with retinal and neurodevelopmental disorders in humans. These newly identified variants can be used to study human disease pathology and to test novel treatments. Supported by ORIP (P51OD011107, P51OD011106, P40OD012217, S10OD032189), NEI, NIAID, and NIMH.
Transcriptome- and Proteome-Wide Effects of a Circular RNA Encompassing Four Early Exons of the Spinal Muscular Atrophy Genes
Luo, Scientific Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/38714739/
Spinal muscular atrophy (SMA) is a leading genetic cause of mortality in infants and often results from a deficiency of deletions of or mutations in the SMN1 gene. In this study, researchers report the transcriptome- and proteome-wide effects of overexpression of C2A‑2B3-4, a circular RNA produced by SMN1 and SMN2, in cells. They report that C2A-2B-3-4 is associated with expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation, and neuromuscular junction formation. More work is needed to investigate the role of these genes in processes associated with SMA and other pathological conditions, including cancer and male infertility. Supported by ORIP (T35OD027967) and NINDS.
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.
Identifying Potential Dietary Treatments for Inherited Metabolic Disorders Using Drosophila Nutrigenomics
Martelli et al., Cell Reports. 2024.
https://www.sciencedirect.com/science/article/pii/S221112472400189X?via%3Dihub=
Inherited metabolic disorders are known to cause severe neurological impairment and child mortality and can sometimes respond to dietary treatment; however, a suitable paradigm for testing diets is lacking for developing effective dietary treatment. In this study, researchers found that 26 of 35 Drosophila amino acid disorder models screened for disease–diet interactions displayed diet-altered development and/or survival. Among these models, researchers showed that dietary cysteine depletion normalizes metabolic profile and rescues development, neurophysiology, behavior, and life span in a model for isolated sulfite oxidase deficiency. These findings demonstrate the value of using Drosophila in studying diet-sensitive metabolic disorders and developing potential dietary therapies. Supported by ORIP (R24OD031447) and NHGRI.
Pathogenesis and Virulence of Coronavirus Disease: Comparative Pathology of Animal Models for COVID-19
Kirk et al., Virulence. 2024.
https://pubmed.ncbi.nlm.nih.gov/38362881
Researchers have used animal models that can replicate clinical and pathologic features of severe human coronavirus infections to develop novel vaccines and therapeutics in humans. The purpose of this review is to describe important animal models for COVID-19, with an emphasis on comparative pathology. The highlighted species included mice, ferrets, hamsters, and nonhuman primates. Knowledge gained from studying these animal models can help inform appropriate model selection for disease modeling, as well as for vaccine and therapeutic developments. Supported by ORIP (T32OD010993) and NIAID.
De Novo Variants in FRYL Are Associated With Developmental Delay, Intellectual Disability, and Dysmorphic Features
Pan et al., The American Journal of Human Genetics. 2024.
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00039-9
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans, and its functions in mammals are largely unknown. Investigators report 13 individuals who have de novo heterozygous variants in FRYL and one individual with a heterozygous FRYL variant that is not confirmed to be de novo. The individuals present with developmental delay; intellectual disability; dysmorphic features; and other congenital anomalies in cardiovascular, skeletal, gastrointestinal, renal, and urogenital systems. Using fruit flies, investigators provide evidence that haploinsufficiency in FRYL likely underlies a disorder in humans with developmental and neurological symptoms. Supported by ORIP (U54OD030165), NHLBI, NICHD, and NCATS.
Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population
Cruz Cisneros et al., Vaccines. 2024.
https://pubmed.ncbi.nlm.nih.gov/38276675/
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. Although host genetic factors are known to affect vaccine efficacy for such respiratory pathogens as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. Investigators used the diversity outbred mouse model to study the effects of genetic variation on vaccine efficiency. Data indicate that variations in vaccine response in mice are heritable, similar to that in human populations. Supported by ORIP (U42OD010924), NIAID, and NIGMS.
The Impact of SIV-Induced Immunodeficiency on Clinical Manifestation, Immune Response, and Viral Dynamics in SARS-CoV-2 Coinfection
Melton et al., bioRxiv. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680717/
The effects of immunodeficiency caused by chronic HIV infection on COVID-19 have not been directly addressed in a controlled setting. Investigators conducted a pilot study in which two pigtail macaques (PTMs) chronically infected with SIVmac239 were exposed to SARS-CoV-2 and compared with SIV-naive PTMs infected with SARS-CoV-2. Despite the marked decrease in CD4+ T cells in the SIV-positive animals prior to exposure to SARS-CoV-2, investigators found that disease progression, viral persistence, and evolution of SARS-CoV-2 were comparable to the control group. These findings suggest that SIV-induced immunodeficiency alters the immune response to SARS-CoV-2 infection, leading to impaired cellular and humoral immunity. However, this impairment does not significantly alter the course of infection. Supported by ORIP (P51OD011104, U42OD013117, S10OD026800, S10OD030347) and NIAID.
Prime Editing–Mediated Correction of the CFTR W1282X Mutation in iPSCs and Derived Airway Epithelial Cells
Li et al., PLOS ONE. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686454/
Cystic fibrosis (CF) is caused by recessive mutations in the CF transmembrane conductance regulator (CFTR) gene. Correction of nonsense CFTR mutations, which affects 10% of CF patients, via genomic editing represents a promising therapeutic approach. In this study, investigators tested whether prime editing can be applied as a potential therapeutic modality. Induced pluripotent stem cells (iPSCs) from a CF patient homozygous for the CFTR W1282X mutation were used. Studies demonstrated that prime editing corrected mutant allele in iPSCs, which effectively restored CFTR function in iPSC-derived airway epithelial cells and organoids. Supported by ORIP (R01OD01026594).
Broad Receptor Tropism and Immunogenicity of a Clade 3 Sarbecovirus
Lee et al., Cell Host and Microbe. 2023.
https://www.sciencedirect.com/science/article/pii/S1931312823004225
Investigators showed that the S glycoprotein of the clade 3 sarbecovirus PRD-0038 in the African Rhinolophus bat has a broad angiotensin-converting enzyme 2 (ACE2) usage and that receptor-binding domain (RBD) mutations further expand receptor promiscuity and enable human ACE2 utilization. They generated a cryogenic electron microscopy structure of the RBD bound to ACE2, explaining receptor tropism and highlighting differences between SARS-CoV-1 and SARS-CoV-2. PRD‑0038 S vaccination elicits greater titers of antibodies cross-reacting with vaccine-mismatched clade 2 and clade 1a sarbecoviruses, compared with SARS-CoV-2. These findings underline a potential molecular pathway for zoonotic spillover of a clade 3 sarbecovirus, as well as the need to develop pan-sarbecovirus vaccines and countermeasures. Supported by ORIP (S10OD032290, S10OD026959, S10OD021644), NIAID, NCI, and NIGMS.