Selected Grantee Publications
A Potent Myeloid Response Is Rapidly Activated in the Lungs of Premature Rhesus Macaques Exposed to Intra-Uterine Inflammation
Jackson et al., Mucosal Immunology. 2022.
https://www.doi.org/10.1038/s41385-022-00495-x
Up to 40% of preterm births are associated with histological chorioamnionitis (HCA), which can lead to neonatal mortality, sepsis, respiratory disease, and neurodevelopmental problem. Researchers used rhesus macaques to comprehensively describe HCA-induced fetal mucosal immune responses and delineate the individual roles of IL-1β and TNFα in HCA-induced fetal pathology. Their data indicate that the fetal innate immune system can mount a rapid, multifaceted pulmonary immune response to in utero exposure to inflammation. Taken together, this work provides mechanistic insights into the association between HCA and the postnatal lung morbidities of the premature infant and highlights the therapeutic potential of inflammatory blockade in the fetus. Supported by ORIP (P51OD011107), NIEHS, NIDDK, NHLBI, and NICHD.
Effects of Early Daily Alcohol Exposure on Placental Function and Fetal Growth in a Rhesus Macaque Model
Lo et al., American Journal of Obstetrics and Gynecology. 2021.
https://www.sciencedirect.com/science/article/pii/S0002937821008309?via%3Dihub=
In a rhesus macaque model for chronic prenatal alcohol exposure, daily consumption during early pregnancy significantly diminished placental perfusion at mid to late gestation and significantly decreased the oxygen supply to the fetal vasculature throughout pregnancy. These findings were associated with the presence of microscopic placental infarctions. Although placental adaptations may compensate for early environmental perturbations to fetal growth, placental blood flow and oxygenation were reduced, consistent with the evidence of placental ischemic injury that persisted throughout pregnancy. Supported by ORIP (P51OD011092), NICHD, and NIAAA.
Postpubertal Spermatogonial Stem Cell Transplantation Restores Functional Sperm Production in Rhesus Monkeys Irradiated Before and After Puberty
Shetty et al., Andrology. 2021.
https://onlinelibrary.wiley.com/doi/10.1111/andr.13033
Cancer treatment of prepubertal patients impacts future fertility due to the abolition of spermatogonial stem cells (SSCs). Prepubertal rhesus monkeys (n=6) were unilaterally castrated, and the remaining testes irradiated twice to insure loss of SSCs; the animals were treated with a vehicle or GnRH antagonist for 8 weeks (n=3/treatment). The cryopreserved prepubertal testicular tissue was allergenically transplanted into the intact testes of the monkeys after puberty. Recovery of viable donor epididymal sperm was observed in half the monkeys. These results illustrate that sperm production can be restored in primates by transplantation of testicular cells from cryopreserved untreated prepubertal testes into seminiferous tubules of the remaining testes. Supported by ORIP (P51OD011092), NICHD, and NCI.
Evidence in Primates Supporting the Use of Chemogenetics for the Treatment of Human Refractory Neuropsychiatric Disorders
Roseboom et al., Molecular Therapy. 2021.
https://doi.org/10.1016/j.ymthe.2021.04.021
A rhesus macaque model for pathological anxiety was used to investigate the feasibility of decreasing anxiety using chemogenetics, known as DREADDs (designer receptors exclusively activated by designer drugs), to reduce amygdala neuronal activity. A low-dose clozapine administration strategy was developed to induce DREADD-mediated amygdala inhibition. Compared to controls, clozapine selectively decreased anxiety-related freezing behavior in the human intruder paradigm in the chemogentic monkeys, while coo vocalizations and locomotion were unaffected. These results are an important step in establishing chemogenetic strategies for patients with refractory neuropsychiatric disorders in which amygdala alterations are central to disease pathophysiology. Supported by ORIP (P51OD011106), NIMH, and NICHD.
Metabolomics Analysis of Follicular Fluid Coupled With Oocyte Aspiration Reveals Importance of Glucocorticoids in Primate Periovulatory Follicle Competency
Ravisankar et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-85704-6
Assisted reproductive therapy in primates requires ovarian stimulation protocols, which result in multiple heterogeneous oocytes with variable capacity for fertilization, cleavage, and blastocyst formation. Recovered oocytes from rhesus macaque follicles (n=74 follicles) were fertilized in vitro and classified as failed to cleave, cleaved but arrested, or able to form blastocysts. Metabolomics analysis of the follicular fluid identified 60 metabolites that were different among embryo classifications; key was an increase in the intrafollicular ratio of cortisol to cortisone in the blastocyst group, which was associated with translocation of the glucocorticoid receptor, NR3C1. The data suggest a role for NR3C1 in the regulation of follicular processes, such as expansion of cumulus granulosa cells, via paracrine signaling. Supported by ORIP (P51OD011092) and NICHD.
Autologous Transplant Therapy Alleviates Motor and Depressive Behaviors in Parkinsonian Monkeys
Tao et al., Nature Medicine. 2021.
https://www.nature.com/articles/s41591-021-01257-1
Generation of induced pluripotent stem cells (iPSCs) enables standardized of dopamine (DA) neurons for autologous transplantation therapy to improve motor functions in Parkinson disease (PD). Adult male rhesus PD monkeys receiving autologous, but not allogenic, transplantation exhibited recovery from motor and depressive signs of PD over a 2-year period without immunosuppressive therapy. Mathematical modeling showed correlations between surviving DA neurons with PET signal intensity and behavior recovery regardless of autologous or allogeneic transplant, suggesting a predictive power of PET and motor behaviors for surviving DA neuron number. The results demonstrate favorable efficacy of the autologous transplant approach to treat PD. Supported by ORIP (P51OD011106) NINDS, and NICHD.
Increased Proviral DNA in Circulating Cells Correlates With Plasma Viral Rebound in SIV-Infected Rhesus Macaques after Antiretroviral Therapy Interruption
Ziani et al., Journal of Virology. 2021.
https://jvi.asm.org/content/early/2021/01/05/JVI.02064-20
Investigators longitudinally tracked dynamic decay of cell-associated viral RNA/DNA in systemic and lymphoid tissues in SIV-infected rhesus macaques on prolonged combined antiretroviral therapy (cART) to evaluate predictors of viral rebound after treatment cessation. Suppressive cART substantially reduced plasma SIV RNA, cell-associated unspliced, and multiply spliced SIV RNA to undetectable levels, yet viral DNA remained detectable in systemic tissues and lymphoid compartments throughout cART. A rapid increase of integrated proviral DNA in peripheral mononuclear cells was detected once cART was withdrawn, accompanied by the emergence of detectable plasma viral load. The increase of peripheral proviral DNA post cART interruption correlated with the emergence and degree of viral rebound. These results suggest that measuring total viral DNA in SIV infection may be a relatively simple surrogate marker of reservoir size, and may predict viral rebound after treatment interruption, and inform treatment strategies. Supported by ORIP (P51OD011104), NIAID and NICHD.