Selected Grantee Publications
The Widely Used Ucp1-Cre Transgene Elicits Complex Developmental and Metabolic Phenotypes
Halurkar et al., Nature Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/39824816
Bacterial artificial chromosome technology is instrumental to mouse transgenics, including in studies of highly thermogenic brown adipose tissue and energy-storing white adipose tissue. Researchers discovered that male and female Ucp1-CreEvdr transgenic mice, which are commonly used to study fat tissue, may have unintended effects on metabolism and development. Findings revealed that these mice show changes in both brown and white fat function and disruptions in gene activity, suggesting broader physiological impacts than previously thought. This study emphasizes the need for careful validation of genetic tools in research to ensure accurate results, highlighting the potential concerns in using the Ucp1-CreEvdr model in metabolic and developmental studies. Supported by ORIP (R21OD034470, R21OD031907) NCATS, NIDCR, and NIDDK.
Targeting Pancreatic Cancer Cell Stemness by Blocking Fibronectin-Binding Integrins on Cancer-Associated Fibroblasts
Wu et al., Cancer Research Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/39785683
Cancer-associated fibroblasts (CAFs) stimulate the formation and progression of pancreatic adenocarcinoma (PDAC) through the generation of extracellular matrix (ECM). Researchers developed a bispecific antibody (bsAb) that targets α5β1 and αvβ3 integrins expressed on CAFs. Blockade using the bsAb resulted in reduced assembly of fibronectin and collagen fibers in vitro. An antifibrotic effect was observed when CAFs were plated for 72 hours prior to bsAb treatment; pre-deposited ECM was disrupted. Six- to 8-week-old female nu/nu mice treated with bsAb demonstrated fewer tumors and reduced tumor stiffness compared with those exposed to only CAFs co-injected with PDAC cells. These results support a potential novel PDAC therapeutic that targets CAF-mediated fibronectin assembly and ECM production. Supported by ORIP (K01OD030513) and NCI.
Integrative Multi-omics Analysis Uncovers Tumor-Immune-Gut Axis Influencing Immunotherapy Outcomes in Ovarian Cancer
Rosario et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39638782
Recurrent ovarian cancer (OC) is the deadliest gynecological malignancy, with a 5-year survival rate of 50% and a median progression-free survival (PFS) of 1.9 to 2.1 months. A trial cohort of 40 patients was treated with a combination of the anti-PD-1 pembrolizumab, the anti–vascular endothelial growth factor bevacizumab, and cyclophosphamide. The investigators conducted a multi-omics analysis—including transcriptomic analysis, digital spatial profiling, 16s-rRNA sequencing, and metabolomics—to understand the underlying mechanisms for the enhanced PFS to a median of 10.2 months and overall response rate of 47.5%. Multi-omics analysis highlighted the formation of tertiary lymphoid structures known to improve responses to immunotherapy, differential microbial patterns, and alterations in the metabolites in three key metabolism pathways that enhanced immune response in patients to produce a durable clinical response. These findings highlight the importance of the tumor microenvironment and the gut microbiome, along with its metabolites, in elevating the efficacy of the cocktail therapy in recurrent OC patients, thereby enhancing their survival and quality of life. Supported by ORIP (S10OD024973) and NCI.
Transcriptomic and Genetic Profiling in a Spontaneous Non-Human Primate Model of Hypertrophic Cardiomyopathy and Sudden Cardiac Death
Rivas et al., Scientific Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/39733099/
Approximately 1 in 500 individuals are affected by hypertrophic cardiomyopathy (HCM). HCM is characterized by increased left ventricular wall thickness, diastolic dysfunction, and myocardial fibrosis. Outcomes of HCM range from arrhythmias and thromboembolic complications to sudden cardiac death. A current knowledge gap is in understanding the genetic cause of HCM. Researchers compared a nonhuman primate rhesus macaque HCM model to an adult human cohort data set and found that they shared 215 upregulated differentially expressed genes (DEGs); 40 downregulated DEGs; and enriched gene ontology terms, including cardiac muscle cell contraction and heart contraction. The molecular similarity in transcriptomic signatures could be used to develop novel drug therapies to treat HCM in patients. Supported by ORIP (P51OD011107, T32OD011147), NCATS, and NHLBI.
Aberrant Activation of Wound-Healing Programs within the Metastatic Niche Facilitates Lung Colonization by Osteosarcoma Cells
Reinecke et al., Clinical Cancer Research. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11739783/
The leading cause of deaths in the pediatric osteosarcoma is due to lung metastasis. A current clinical need is the development of therapies that disrupt the later stages of metastasis. Researchers used 6- to 8-week-old female C57BL/6 and CB17-SCID mice to understand how tumor cells disrupt the lung microenvironment to promote tumor growth. Single-cell RNA sequencing and spatial transcriptomics demonstrated osteosarcoma–epithelial cell interactions in a chronic state of wound healing in the lung. Nintedanib administration significantly disrupted metastatic progression compared with the vehicle control, demonstrating a potential novel therapeutic for combating osteosarcoma lung metastasis. Supported by ORIP (K01OD031811), NCI, and NCATS.
Lipid Nanoparticle-Mediated mRNA Delivery to CD34+ Cells in Rhesus Monkeys
Kim et al., Nature Biotechnology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578569
Blood cells, which are derived from hematopoietic stem cells (HSCs), promote pathologies including anemia, sickle cell disease, immunodeficiency, and metabolic disorders when dysfunctional. Because of the morbidity that results from the bone marrow mobilization and chemotherapy patient conditioning of current HSC therapies, novel treatment strategies that deliver RNA to HSCs are needed. Researchers found a lipid nanoparticle (LNP), LNP67, that delivers messenger RNA (mRNA) to murine HSCs in vivo and human HSCs ex vivo without the use of a cKit-targeting ligand. When tested in 7- to 8-month-old male and female rhesus monkeys, LNP67 successfully delivered mRNA to CD34+ cells and liver cells without adverse effects. These results show the potential translational relevance of an in vivo LNP–mRNA drug. Supported by ORIP (U42OD027094, P51OD011107), NIDDK, and NCATS.
SREBP-Dependent Regulation of Lipid Homeostasis Is Required for Progression and Growth of Pancreatic Ductal Adenocarcinoma
Ishida et al., Cancer Research Communications. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11444119
Lipids are crucial for tumor cell proliferation, and sterol regulatory element-binding protein (SREBP) activation drives lipid synthesis and uptake to maintain cancer growth. This study investigated the role of the SREBP pathway and its regulator, SREBP cleavage–activating protein (SCAP), in lipid metabolism during the development and progression of pancreatic ductal adenocarcinoma (PDAC). Using female mouse xenograft models and male and female pancreas-specific Scap knockout transgenic mice, researchers demonstrated that SCAP is essential for PDAC progression in low-nutrient conditions, linking lipid metabolism to tumor growth. These findings highlight SREBP as a key therapeutic target for PDAC, offering potential strategies for improving treatment by disrupting cancer-associated metabolic reprogramming. Supported by ORIP (T32OD011089), NCI, NHLBI, and NIGMS.
Multimodal Analysis of Dysregulated Heme Metabolism, Hypoxic Signaling, and Stress Erythropoiesis in Down Syndrome
Donovan et al., Cell Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/39120971
Down syndrome (DS), a genetic condition caused by the presence of an extra copy of chromosome 21, is characterized by intellectual and developmental disability. Infants with DS often suffer from low oxygen saturation, and DS is associated with obstructive sleep apnea. Investigators assessed the role that hypoxia plays in driving health conditions that are comorbid with DS. A multiomic analysis showed that people with DS exhibit elevated heme metabolism and activated stress erythropoiesis, which are indicators of chronic hypoxia; these results were recapitulated in a mouse model for DS. This study identified hypoxia as a possible mechanism underlying several conditions that co-occur with DS, including congenital heart defects, seizure disorders, autoimmune disorders, several leukemias, and Alzheimer's disease. Supported by ORIP (R24OD035579), NCATS, NCI, and NIAID.
Engineered Deletions of HIV Replicate Conditionally to Reduce Disease in Nonhuman Primates
Pitchai et al., Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39116226/
Current antiretroviral therapy (ART) for HIV is limited by the necessity for continuous administration. Discontinuation of ART leads to viral rebound. A therapeutic interfering particle (TIP) was developed as a novel single-administration HIV therapy using defective interfering particles. TIP treatment in two humanized mouse models demonstrated a significant reduction in HIV viral load. TIP intervention was completed 24 hours prior to a highly pathogenic simian immunodeficiency virus (SIV) challenge in a nonhuman primate (NHP) rhesus macaque infant model. Compared to untreated SIV infection, NHPs that received TIP treatment displayed no visible signs of SIV-induced AIDS and exhibited improved seroconversion and a significant survival advantage to the 30-week clinical endpoint. Peripheral blood mononuclear cells isolated from HIV-infected patients showed that TIP treatment reduced HIV outgrowth. This study demonstrates the potential use of a single-administration TIP for HIV treatment. Supported by ORIP (P51OD011092, U42OD010426), NCI, NIAID, and NIDA.
Identifying Mitigating Strategies for Endothelial Cell Dysfunction and Hypertension in Response to VEGF Receptor Inhibitors
Camarda et al., Clinical Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/39282930/
Vascular endothelial growth factor receptor inhibitor (VEGFRi) use can improve survival in patients with advanced solid tumors, but outcomes can worsen because of VEGFRi-induced hypertension, which can increase the risk of cardiovascular mortality. The underlying pathological mechanism is attributed to endothelial cell (EC) dysfunction. The researchers performed phosphoproteomic profiling on human ECs and identified α-adrenergic blockers, specifically doxazosin, as candidates to oppose the VEGFRi proteomic signature and inhibit EC dysfunction. In vitro testing of doxazosin with mouse, canine, and human aortic ECs demonstrated EC-protective effects. In a male C57BL/6J mouse model with VEGFRi-induced hypertension, it was demonstrated that doxazosin prevents EC dysfunction without decreasing blood pressure. In canine cancer patients, both doxazosin and lisinopril improve VEGFRi-induced hypertension. This study demonstrates the use of phosphoproteomic screening to identify EC-protective agents to mitigate cardio-oncology side effects. Supported by ORIP (K01OD028205), NCI, NHGRI, and NIGMS.