Selected Grantee Publications
- Clear All
- 27 results found
- Swine Models
Ultrasoft Platelet-Like Particles Stop Bleeding in Rodent and Porcine Models of Trauma
Nellenbach et al., Science Translational Medicine. 2024.
https://www.science.org/doi/10.1126/scitranslmed.adi4490
Platelet transfusions are the current standard of care to control bleeding in patients following acute trauma, but their use is limited by short shelf life and limited supply. Immunogenicity and contamination risks also are a concern. Using ultrasoft and highly deformable nanogels coupled to fibrin-specific antibody fragments, researchers developed synthetic platelet-like particles (PLPs) as an alternative for immediate treatment of uncontrolled bleeding. They report that PLPs reduced bleeding and facilitated healing of injured tissue in mice, rat, and swine models (sex not specified) for traumatic injury. These findings can inform further translational studies of synthetic PLPs for the treatment of uncontrolled bleeding in a trauma setting. Supported by ORIP (T32OD011130) and NHLBI.
Consistent Survival in Consecutive Cases of Life-Supporting Porcine Kidney Xenotransplantation Using 10GE Source Pigs
Eiseson et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/38637524/
Xenotransplantation offers potential for addressing organ donor shortages, and the U.S. Food and Drug Administration recently issued guidance on a regulatory path forward. Researchers have performed studies in this area, but concerns have been expressed about safe clinical translation of their results (e.g., survival, preclinical procurement, immunosuppression, clinical standards of care). In this study, the authors report consistent survival in consecutive cases of kidney xenotransplantation from pigs (male and female) to baboons (male and female). The authors propose that their findings serve as proof of concept for prevention of xenograft rejection in recipients of genetically modified porcine kidneys. This work offers insights for immunosuppression regimens for first-in-human clinical trials. Supported by ORIP (P40OD024628).
Pigs in Transplantation Research and Their Potential as Sources of Organs in Clinical Xenotransplantation
Raza et al., Comparative Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38359908/
The pig has now gained importance as a potential source of organs for clinical xenotransplantation. When an organ from a wild-type (i.e., genetically unmodified) pig is transplanted into an immunosuppressed nonhuman primate, a vigorous host immune response causes hyperacute rejection (within minutes or hours). This response has been largely overcome by (1) extensive gene editing of the organ-source pig and (2) administration to the recipient of novel immunosuppressive therapy based on blockade of the CD40/CD154 T-cell costimulation pathway. The combination of gene editing and novel immunosuppressive therapy has extended life-supporting pig kidney graft survival to greater than 1 year and of pig heart survival to up to 9 months. This review briefly describes the techniques of gene editing, the potential risks of transfer of porcine endogenous retroviruses with the organ, and the need for breeding and housing of donor pigs under biosecure conditions. Supported by ORIP (P40OD024628) and NIAID.
DAZL Knockout Pigs as Recipients for Spermatogonial Stem Cell Transplantation
Lara et al., Cells. 2023.
https://pubmed.ncbi.nlm.nih.gov/37947660/
Spermatogonial stem cell (SSC) transplantation is a technique that holds potential for addressing male infertility, as well as generation of genetically modified animal models. DAZL (Deleted in Azoospermia–Like) is a conserved RNA-binding protein important for germ cell development, and DAZL knockout (KO) causes defects in germ cell commitment and differentiation. Investigators characterized DAZL-KO pigs as SSC transplantation recipients. DAZL-KO pigs support donor-derived spermatogenesis following SSC transplantation, but low spermatogenic efficiency currently limits their use for the production of offspring. Supported by ORIP (R01OD016575) and NIGMS.
A LGR5 Reporter Pig Model Closely Resembles Human Intestine for Improved Study of Stem Cells in Disease
Schaaf et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300223R
The constant epithelial regeneration in the intestine is the sole responsibility of intestinal epithelial stem cells (ISCs), which reside deep in the intestinal crypt structures. To effectively study ISCs, tools to identify this cell population are necessary. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein–Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer model. Overall, this novel porcine model provides critical advancement to the field of translational gastrointestinal research. Supported by ORIP (R21OD019738, K01OD019911), NCI, and NIDDK.
Effects of Acute Femoral Head Ischemia on the Growth Plate and Metaphysis in a Piglet Model of Legg-Calvé-Perthes Disease
Armstrong et al., Osteoarthritis and Cartilage. 2023.
https://pubmed.ncbi.nlm.nih.gov/36696941/
Legg-Calvé-Perthes disease (LCPD) can lead to permanent deformity of the femoral head and premature osteoarthritis, but the underlying cause remains unknown. More work is needed to determine optimal treatment methods for LCPD. Using a piglet model for LCPD, researchers assessed the effects of acute femoral head ischemia on the proximal femoral growth plate and metaphysis. They reported that alterations to the growth plate zones and metaphysis occurred by 2 days post-ischemia and persisted at 7 days post-ischemia. These findings suggest that growth disruption may occur sooner after the onset of ischemia than researchers had hypothesized previously. Supported by ORIP (T32OD010993, K01OD021293), NIAMS, and NCATS.
Naturally Occurring Osteochondrosis Latens Lesions Identified by Quantitative and Morphological 10.5 T MRI in Pigs
Armstrong et al., Journal of Orthopaedic Research. 2023.
https://pubmed.ncbi.nlm.nih.gov/35716161/
Juvenile osteochondritis dissecans (JOCD) is a pediatric orthopedic disorder that is associated with pain and gait deficits. JOCD lesions form in the knee, elbow, and ankle joints and can progress to early-onset osteoarthritis. In this study, researchers used a noninvasive magnetic resonance imaging (MRI) method to identify naturally occurring lesions in intact knee and elbow joints of juvenile pigs. This work can be applied to noninvasive identification and monitoring of early JOCD lesions and determination of risk factors that contribute to their progression in children. Supported by ORIP (K01OD021293, T32OD010993), NIAMS, and NIBIB.
Orthotopic Transplantation of the Full-Length Porcine Intestine After Normothermic Machine Perfusion
Abraham et al., Transplantation Direct. 2022.
https://www.doi.org/10.1097/TXD.0000000000001390
Successful intestinal transplantation currently is hindered by graft injury that occurs during procurement and storage, which contributes to postoperative sepsis and allograft rejection. Improved graft preservation could expand transplantable graft numbers and enhance post-transplant outcomes. Superior transplant outcomes recently have been demonstrated in clinical trials using machine perfusion to preserve the liver. The investigators report the development and optimization of machine perfusion preservation of small intestine and successful transplantation of intestinal allografts in a porcine model. Supported by ORIP (K01OD019911), NIAID, and NIDDK.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
Profiling Development of Abdominal Organs in the Pig
Gabriel et al., Scientific Reports. 2022.
https://www.doi.org/10.1038/s41598-022-19960-5
The pig is a model system for studying human development and disease due to its similarities to human anatomy, physiology, size, and genome. Moreover, advances in CRISPR gene editing have made genetically engineered pigs a viable model for the study of human pathologies and congenital anomalies. However, a detailed atlas illustrating pig development is necessary for identifying and modeling developmental defects. Here, the authors describe normal development of the pig abdominal system (i.e., kidney, liver, pancreas, spleen, adrenal glands, bowel, gonads) and compare them with congenital defects that can arise in gene-edited SAP130 mutant pigs. This atlas and the methods described here can be used as tools for identifying developmental pathologies of the abdominal organs in the pig at different stages of development. Supported by ORIP (U42OD011140), NHLBI, NIAID, NIBIB, NICHD, and NINDS.