Selected Grantee Publications
- Clear All
- 15 results found
- Rodent Models
- Rare Diseases
Intrinsic Link Between PGRN and GBA1 D409V Mutation Dosage in Potentiating Gaucher Disease
Lin et al., Human Molecular Genetics. 2024.
https://doi.org/10.1093/hmg/ddae113
Gaucher disease (GD) is an autosomal recessive disorder and one of the most common lysosomal storage diseases. GD is caused by mutations in the GBA1 gene that encodes glucocerebrosidase (GCase), a lysosomal protein involved in glyocolipid metabolism. Progranulin (PGRN, encoded by GRN) is a modifier of GCase, and GRN mutant mice exhibit a GD-like phenotype. The researchers in this study aimed to understand the relationship between GCase and PGRN. They generated a panel of mice with various doses of the GBA1 D409V mutation in the GRN-/- background and characterized the animals’ disease progression using biochemical, pathological, transcriptomic, and neurobehavioral analyses. Homozygous (GRN-/-, GBA1 D409V/D409V) and hemizygous (GRN-/-, GBA1 D409V/null) animals exhibited profound inflammation and neurodegeneration compared to PG96 wild-type mice. Compared to homozygous mice, hemizygous mice showed more profound phenotypes (e.g., earlier onset, increased tissue fibrosis, shorter life span). These findings offer insights into GD pathogenesis and indicate that GD severity is affected by GBA1 D409V dosage and the presence of PGRN. Supported by ORIP (R21OD033660) and NINDS.
PIKFYVE Inhibition Mitigates Disease in Models of Diverse Forms of ALS
Hung et al., Cell . 2023.
https://doi.org/10.1016/j.cell.2023.01.005
Investigators showed that pharmacological suppression of PIKFYVE activity reduces pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of amyotrophic lateral sclerosis (ALS). Upon PIKFYVE inhibition, exocytosis is activated to transport aggregation-prone proteins out of the cells, a process that does not require stimulating macroautophagy or the ubiquitin-proteosome system. These findings suggest therapeutic potential to manage multiple forms of ALS. Supported by ORIP (S10OD021553) and NINDS.
Mendelian Gene Identification through Mouse Embryo Viability Screening
Cacheiro et al., Genome Medicine. 2022.
https://www.doi.org/10.1186/s13073-022-01118-7
The investigators dissected phenotypic similarities between patients and model organisms by assessing the embryonic stage at which homozygous loss of function results in lethality in mice of both sexes obtained from the International Mouse Phenotyping Consortium. Information on knockout mouse embryo lethality can be used to prioritize candidate genes associated with certain disorders. Access to unsolved cases from rare-disease genome sequencing programs allows for the screening of those genes for potentially pathogenic variants, which could lead to a diagnosis and new potential treatment options to inform the management of human disease. Supported by ORIP (UM1OD023221, UM1OD023222, U42OD011174) and NHGRI.
Sunitinib Inhibits STAT3 Phosphorylation in Cardiac Muscle and Prevents Cardiomyopathy in the mdx Mouse Model of Duchenne Muscular Dystrophy
Oliveira-Santos et al., Human Molecular Genetics. 2022.
https://www.doi.org/10.1093/hmg/ddac042
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy, affecting about 1 in 5,000 boys worldwide. DMD is a fatal X-linked genetic disorder that results from mutations in the dystrophin gene and leads to progressive muscular degeneration. Individuals with DMD often die at a young age from respiratory or heart failure. To date, few studies have examined the basis of cardiac failure associated with DMD, and no effective U.S. Food and Drug Administration (FDA)–approved treatment options are available. Using a mouse model of both sexes, researchers characterized the effectiveness of sunitinib, an FDA-approved small-molecule drug, in preventing DMD-related cardiomyopathy. The treatment reduced STAT3 activation in cardiac muscle and prevented cardiomyopathy disease progression. Inhibition of STAT3 activation in cardiac muscle can reduce inflammation and fibrosis and prevent heart failure. These findings demonstrate sunitinib’s potential as a novel treatment option for skeletal and cardiac muscle dysfunction in patients with DMD. Supported by ORIP (R42OD030543).
A Novel DPH5-Related Diphthamide-Deficiency Syndrome Causing Embryonic Lethality or Profound Neurodevelopmental Disorder
Shankar et al., Genetics in Medicine. 2022.
https://www.doi.org/10.1016/j.gim.2022.03.014
Neurodevelopmental disorders (NDDs) affect more than 3% of the pediatric population and often have associated neurologic or multisystem involvement. The underlying genetic etiology of NDDs remains unknown in many individuals. Investigators characterized the molecular basis of NDDs in children of both sexes with nonverbal NDDs from three unrelated families with distinct overlapping craniofacial features. The investigators also used a mouse model of both sexes to determine the pathogenicity of variants of uncertain significance, as well as genes of uncertain significance, to advance translational genomics and provide precision health care. They identified several variants in DPH5 as a potential cause of profound NDD. Their findings provide strong clinical, biochemical, and functional evidence for DPH5 variants as a novel cause of embryonic lethality or profound NDD with multisystem involvement. Based on these findings, the authors propose that “DPH5-related diphthamide deficiency syndrome” is a novel autosomal-recessive Mendelian disorder. Supported by ORIP (K01OD026608, U42OD012210) and NHGRI.