Selected Grantee Publications
- Clear All
- 250 results found
- Invertebrate Models
- Nonhuman Primate Models
Lipid Nanoparticle-Mediated mRNA Delivery to CD34+ Cells in Rhesus Monkeys
Kim et al., Nature Biotechnology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578569
Blood cells, which are derived from hematopoietic stem cells (HSCs), promote pathologies including anemia, sickle cell disease, immunodeficiency, and metabolic disorders when dysfunctional. Because of the morbidity that results from the bone marrow mobilization and chemotherapy patient conditioning of current HSC therapies, novel treatment strategies that deliver RNA to HSCs are needed. Researchers found a lipid nanoparticle (LNP), LNP67, that delivers messenger RNA (mRNA) to murine HSCs in vivo and human HSCs ex vivo without the use of a cKit-targeting ligand. When tested in 7- to 8-month-old male and female rhesus monkeys, LNP67 successfully delivered mRNA to CD34+ cells and liver cells without adverse effects. These results show the potential translational relevance of an in vivo LNP–mRNA drug. Supported by ORIP (U42OD027094, P51OD011107), NIDDK, and NCATS.
Immune Gene Regulation Is Associated With Age and Environmental Adversity in a Nonhuman Primate
Watowich et al., Molecular Ecology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39032090
The mammalian aging process involves a decline in physiological function, influenced by molecular mechanisms like epigenetic changes. These processes have been studied in controlled settings, however the role of aging in naturalistic populations remains unclear. This study explored the effects of environmental stressors (i.e., Hurricane Maria) on DNA methylation in free-living male and female rhesus macaques in Cayo Santiago, Puerto Rico. Results showed that environmental adversity accelerated age-related molecular changes, especially in gene transcription regions, while primary aging mainly affected nonregulatory regions. These findings highlight how the biology of aging is influenced by environmental factors. Supported by ORIP (P40OD012217), NIA, and NIMH.
SIV-Specific Antibodies Protect Against Inflammasome-Driven Encephalitis in Untreated Macaques
Castell et al., Cell Reports. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11552693
Viral infections are the most common infectious cause of encephalitis, and simian immunodeficiency virus (SIV)–infected macaques are a well-established model for HIV. Researchers investigated the protective effects of SIV-specific antibodies against inflammation-driven encephalitis in using untreated, SIV-infected, male and female pigtail and rhesus macaques. Findings indicate that these antibodies reduce neuroinflammation and encephalitis, highlighting the importance of antibodies in controlling neuroimmune responses, especially in the absence of antiretroviral therapy. This study provides insight into immune-modulatory approaches to combating inflammation-driven encephalopathies. Supported by ORIP (U42OD013117, T32OD011089), NIDA, NHLBI, NIAID, NINDS, and NIMH.
Potent Broadly Neutralizing Antibodies Mediate Efficient Antibody-Dependent Phagocytosis of HIV-Infected Cells
Snow et al., PLOS Pathogens. 2024.
https://pubmed.ncbi.nlm.nih.gov/39466835
This study investigates the role of potent broadly neutralizing antibodies (bNAbs) in mediating antibody-dependent cellular phagocytosis (ADCP) of HIV-infected cells. Researchers developed a novel cell-based approach to assess the ADCP of HIV-infected cells expressing natural conformations of the viral envelope glycoprotein, which allows the virus to infect a host cell. The findings in this study demonstrate that bNAbs facilitate efficient ADCP, highlighting their potential in controlling HIV infection by promoting immune clearance of infected cells. This study provides valuable insights into antibody-mediated immune mechanisms and supports the development of antibody-based therapies and vaccines targeting HIV. Supported by ORIP (P51OD011106) and NIAID.
SHIV Remission in Macaques With Early Treatment Initiation and Ultra Long-Lasting Antiviral Activity
Daly et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39632836
Antiretroviral therapy (ART) suppresses HIV and simian immunodeficiency virus (SIV) replication but cannot eliminate reservoirs of long-lived infected cells that enable rebound after discontinuation of ART. These researchers hypothesized that ART designed to have long-lasting activity and penetrate tissue reservoirs would be optimized against HIV or SIV remission. Macaques were treated with a four-drug regimen (i.e., oral emtricitabine/tenofovir alafenamide and long-acting cabotegravir/rilpivirine) designed to improve dosing of immune cells, with or without the immune-activating drug vesatolimod (VES), after the onset of SIV viremia. The animals were monitored for 1 year with treatment and 2 additional years following treatment discontinuation. Durable viral suppression was observed in all animals treated with the optimized ART regimen with or without VES. These results will inform novel HIV treatment regimens with long-lasting antiviral activity in humans. Supported by ORIP (P40OD028116).
Mechanical Force of Uterine Occupation Enables Large Vesicle Extrusion From Proteostressed Maternal Neurons
Wang et al., eLife. 2024.
https://pubmed.ncbi.nlm.nih.gov/39255003
This study investigates how mechanical forces from uterine occupation influence large vesicle extrusion (exopher production) from proteostressed maternal neurons in Caenorhabditis elegans. Exophers, previously found to remove damaged cellular components, are poorly understood. Researchers demonstrate that mechanical stress significantly increases exopher release from touch receptor neurons (i.e., ALMR) during peak reproductive periods, coinciding with egg production. Genetic disruptions reducing reproductive activity suppress exopher extrusion, whereas interventions promoting egg retention enhance it. These findings reveal that reproductive and mechanical factors modulate neuronal stress responses, providing insight on how systemic physiological changes affect neuronal health and proteostasis, with broader implications for reproductive-neuronal interactions. Supported by ORIP (R24OD010943, P40OD010440), NIA, and NIGMS.
A Single-Dose Intranasal Live-Attenuated Codon Deoptimized Vaccine Provides Broad Protection Against SARS-CoV-2 and Its Variants
Liu et al., Nature Communications. 2024.
https://pubmed.ncbi.nlm.nih.gov/39187479
Researchers developed an intranasal, single-dose, live-attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) vaccine (CDO-7N-1) using codon deoptimization. This vaccine demonstrates broad protection against SARS-CoV-2 variants, with highly attenuated replication and minimal lung pathology across multiple in vivo passages. The vaccine induced robust mucosal and systemic neutralizing antibodies, as well as T-cell responses, in male and female hamsters, female K18-hACE2 mice, and male HFH4-hACE2 mice. In male and female cynomolgus macaques, CDO-7N-1 effectively prevented infection, reduced severe disease, and limited transmission of SARS-CoV-2 variants. This innovative approach offers potential advantages over traditional spike-protein vaccines by providing durable protection and targeting emerging variants to curb virus transmission. Supported by ORIP (K01OD026529).
Extended Survival of 9- and 10-Gene-Edited Pig Heart Xenografts With Ischemia Minimization and CD154 Costimulation Blockade-Based Immunosuppression
Chaban et al., The Journal of Heart and Lung Transplantation. 2024.
https://pubmed.ncbi.nlm.nih.gov/39097214
Heart transplantations are severely constrained from the shortage of available organs derived from human donors. Xenotransplantation of hearts from gene-edited (GE) pigs is a promising way to address this problem. Researchers evaluated GE pig hearts with varying knockouts and human transgene insertions. Human transgenes are introduced to mitigate important physiological incompatibilities between pig cells and human blood. Using a baboon heterotopic cardiac transplantation model, one female and seven male specific-pathogen-free baboons received either a 3-GE, 9-GE, or 10-GE pig heart with an immunosuppression regimen targeting CD40/CD154. Early cardiac xenograft failure with complement activation and multifocal infarcts were observed with 3-GE pig hearts, whereas 9- and 10-GE pig hearts demonstrated successful graft function and prolonged survival. These findings show that one or more transgenes of the 9- and 10-GE pig hearts with CD154 blockade provide graft protection in this preclinical model. Supported by ORIP (U42OD011140) and NIAID.
Immune Perturbation Following SHIV Infection Is Greater in Newborn Macaques Than in Infants
Shapiro et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39190496
This study investigates immune perturbation following simian-human immunodeficiency virus (SHIV) infection in newborn and infant male and female rhesus macaques, highlighting significant differences in pathogenesis. Although plasma viremia and lymph node viral DNA were similar, newborns exhibited higher viral DNA levels in gut and lymphoid tissues 6–10 weeks postinfection than infants. Additionally, newborns showed greater immune alterations, with skewed monocyte and CD8+ T-cell profiles and minimal type I interferon responses. These findings suggest age-dependent immunological responses to SHIV and underscore the vulnerability of newborns to HIV-related pathogenesis, providing insights into immune development and pediatric HIV management. Supported by ORIP (P51OD011092, U42OD023038, U42OD010426) and NIAID.
Effect of Metabolic Status on Response to SIV Infection and Antiretroviral Therapy in Nonhuman Primates
Webb et al., JCI Insight. 2024.
https://pubmed.ncbi.nlm.nih.gov/39115937
This study examines how metabolic health influences the efficacy of antiretroviral therapy (ART). Using lean and obese male rhesus macaques, researchers explored the progression of simian immunodeficiency virus (SIV) infection. Obese macaques with metabolic dysfunction experienced more rapid disease progression and had a diminished response to ART than lean macaques. This study suggests metabolic health plays a significant role in HIV progression and treatment outcomes, highlighting the importance of managing metabolic conditions in people with HIV. Supported by ORIP (P51OD011092, S10OD025002), NIAID, and NIDDK.