Selected Grantee Publications
Cryopreservation Method for Drosophila melanogaster Embryos
Zhan et al., Nature Communications. 2021.
https://www.nature.com/articles/s41467-021-22694-z
Drosophila melanogaster is a premier model for biomedical research. However, preservation of Drosophila stocks is labor intensive and costly. Researchers at University of Minnesota reported an efficient method for cryopreservation by optimizing key steps including embryo permeabilization and cryoprotectant agent loading. This method resulted in more than 10% of embryos developing into fertile adults after cryopreservation for 25 distinct strains from different sources. The further optimization and wide adoption of this protocol will solve the long-standing issue in reliably preserving Drosophila stocks and will significantly impact Drosophila as a model organism for biomedical research. Supported by ORIP (R21OD028758) and NIGMS.
The High Affinity Dopamine D2 Receptor Agonist MCL-536: A New Tool for Studying Dopaminergic Contribution to Neurological Disorders
Subburaju et al., ACS Chemical Neuroscience. 2021.
https://pubs.acs.org/doi/full/10.1021/acschemneuro.1c00094
The dopamine D2 receptor exists in two different states, D2high and D2low; the former is the functional form of the D2 receptor and associates with intracellular G-proteins. The D2 agonist [3H]MCL-536 has high affinity for the D2 receptor (Kd 0.8 nM) and potently displaces the binding of (R-(-)-N-n-propylnorapomorphine (NPA; Ki 0.16 nM) and raclopride (Ki 0.9 nM) in competition binding assays. The authors characterized [3H]MCL-536. [3H]MCL-536 as metabolically stable. In vitro autoradiography on transaxial and coronal brain sections showed specific binding of [3H]MCL-536. [3H]MCL-536's unique properties make it a valuable tool for research on neurological disorders like Parkinson's disease or schizophrenia. Supported by ORIP (R43OD020186, R44OD024615) and NIMH.
Characterization of Axolotl Lampbrush Chromosomes by Fluorescence In Situ Hybridization and Immunostaining
Keinath et al., Experimental Cell Research. 2021.
https://pubmed.ncbi.nlm.nih.gov/33675804/
The lampbrush chromosomes (LBCs) in oocytes of the Mexican axolotl (Ambystoma mexicanum) were identified by their relative lengths and predicted centromeres; they have never been associated completely with the mitotic karyotype, linkage maps, or genome assembly. The authors identified 9 of the axolotl LBCs using RNA sequencing to identify actively transcribed genes and 13 bacterial artificial clone probes containing pieces of active genes. This study presents a simple and reliable way to identify each axolotl LBC cytologically and to anchor chromosome-length sequences to the LBCs by immunostaining and fluorescence in situ hybridization. This data will facilitate a more detailed analysis of LBC loops. Supported by ORIP (P40OD019794, R24OD010435) and NIGMS.
Functional Convergence of a Germline-Encoded Neutralizing Antibody Response in Rhesus Macaques Immunized with HCV Envelope Glycoproteins
Chen et al., Immunity. 2021.
https://doi.org/10.1016/j.immuni.2021.02.013
Immunoglobulin heavy chain variable gene IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) targeting the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection in humans. An IGHV1-69 ortholog, VH1.36, is preferentially used for bnAbs isolated from rhesus macaques immunized against HCV Env. Researchers investigated the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by HCV Env vaccination of macaques and compared their findings to IGHV1-69-encoded bnAbs from HCV patients. The investigators found that macaque VH1.36- and human IGHV1-69-encoded bnAbs share many common features, which provides an excellent framework for rational HCV vaccine design and testing. Supported by ORIP (P51OD011133, U42OD010442), NIAID, NCI, and NIGMS.
The Giant Axolotl Genome Uncovers the Evolution, Scaling, and Transcriptional Control of Complex Gene Loci
Schloissnig et al., PNAS. 2021.
https://pubmed.ncbi.nlm.nih.gov/33827918/
Vertebrates harbor recognizably orthologous gene complements but vary 100-fold in genome size. How chromosomal organization scales with genome expansion is unclear, and how acute changes in gene regulation, as during axolotl limb regeneration, occur in the context of a vast genome has remained a riddle. Here, Schloissnig et al. describe the chromosome-scale assembly of the giant, 32 Gb axolotl genome. Hi-C contact data revealed the scaling properties of interphase and mitotic chromosome organization. Analysis of the assembly yielded understanding of the evolution of large, syntenic multigene clusters, including the major histocompatibility complex (MHC) and the functional regulatory landscape of the fibroblast growth factor 8 (Axfgf8) region. The axolotl serves as a primary model for studying successful regeneration. Supported by ORIP (R24OD010435, P40OD019794).
Bilateral Visual Projections Exist in Non-Teleost Bony Fish and Predate the Emergence of Tetrapods
Vigouroux et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/33833117/
In most vertebrates, camera-style eyes contain retinal ganglion cell neurons that project to visual centers on both sides of the brain. However, in fish, ganglion cells were thought to innervate only the contralateral side, suggesting that bilateral visual projections appeared in tetrapods. Here, Vigouroux et al. showed that bilateral visual projections exist in non-teleost fishes and that the appearance of ipsilateral projections does not correlate with terrestrial transition or predatory behavior. However, overexpression of human ZIC2 induces ipsilateral visual projections in zebrafish. Therefore, the existence of bilateral visual projections likely preceded the emergence of binocular vision in tetrapods. Supported by ORIP (R01OD011116).
Rhesus Macaques Build New Social Connections After a Natural Disaster
Testard et al., Current Biology. 2021.
https://www.sciencedirect.com/science/article/pii/S0960982221003687
Climate change has increased the frequency and intensity of weather-related disasters such as hurricanes and floods. In 2017, Puerto Rico suffered its worst natural disaster, Hurricane Maria, leaving 3,000 dead and provoking a mental health crisis. Cayo Santiago Island, home to a population of rhesus macaques (Macaca mulatta), was devastated by this storm. Testard et al. compared social networks of two groups of macaques before and after the hurricane and found an increase in affiliative social connections, driven largely by monkeys most socially isolated before Hurricane Maria. Further analysis revealed monkeys invested in building new relationships rather than strengthening existing ones. Supported by ORIP (P40OD012217), NIA, and NIMH.
Establishing an Immunocompromised Porcine Model of Human Cancer for Novel Therapy Development with Pancreatic Adenocarcinoma and Irreversible Electroporation
Hendricks-Wenger et al., Scientific Reports. 2021.
https://pubmed.ncbi.nlm.nih.gov/33828203/
Efficacious interventions to treat pancreatic cancer lack a preclinical model to recapitulate patients' anatomy and physiology. The authors developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. These pigs were successfully generated using on-demand genetic modifications in embryos. Human Panc01 cells injected into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. This model will be useful to bridge the gap of translating therapies from the bench to clinical application. Supported by ORIP (R21OD027062), NIBIB, and NCI.
Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence
Casalia et al., Journal of Neuroscience. 2021.
https://pubmed.ncbi.nlm.nih.gov/33637558/
The authors report that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents. Their findings reveal that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies. They demonstrate that porcine medial ganglionic eminence exhibits a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity, and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in monkeys and humans), their work allows direct neurodevelopmental comparisons with this literature. Supported by ORIP (U42OD011140) and NINDS.
Sensitive Tracking of Circulating Viral RNA Through All Stages of SARS-CoV-2 Infection
Huang et al., Journal of Clinical Investigation. 2021.
https://www.jci.org/articles/view/146031
Circulating SARS-CoV-2 RNA could represent a more reliable indicator of infection than nasal RNA, but quantitative reverse transcription PCR (RT-qPCR) lacks diagnostic sensitivity for blood samples. Researchers developed a CRISPR-amplified, blood-based COVID-19 (CRISPR-ABC) assay to detect SARS-CoV-2 in plasma. They evaluated the assay using samples from SARS-CoV-2-infected African green monkeys and rhesus macaques, as well as from COVID-19 patients. CRISPR-ABC consistently detected viral RNA in the plasma of the experimentally infected primates from 1 to 28 days after infection. The increases in plasma SARS-CoV-2 RNA in the monkeys preceded rectal swab viral RNA increases. In the patient cohort, the new assay demonstrated 91.2% sensitivity and 99.2% specificity versus RT-qPCR nasopharyngeal testing, and it also detected COVID-19 cases with transient or negative nasal swab RT-qPCR results. These findings suggest that detection of SARS-CoV-2 RNA in blood by CRISPR-augmented RT-PCR could improve COVID-19 diagnosis, facilitate the evaluation of SARS-CoV-2 infection clearance, and help predict the severity of infection. Supported by ORIP (P51OD011104).