Selected Grantee Publications
Body Stiffness Is a Mechanical Property That Facilitates Contact-Mediated Mate Recognition in Caenorhabditis elegans
Weng et al., Current Biology. 2023.
https://www.sciencedirect.com/science/article/abs/pii/S0960982223009272
Body stiffness is a mechanical property that facilitates contact-mediated mate recognition in Caenorhabditis elegans. Chemical cues have been extensively studied as sensory cures of mate recognition, whereas the role of mechanical cues is largely unknown. Investigators studied the link of the hypodermis and body stiffness with mate recognition and mating efficiency in the worm C. elegans. They found that worm males assess attractiveness of potential mates though contact-mediated cues determined by species, sex, and developmental stages of the hypodermis. Body stiffness maintained by a group of cuticular collagens is critical for mate recognition and mating efficiency. This study suggests the important role of mechanosensory cues in mate recognition and provides a platform for mechanistically studying social behavior. Supported by ORIP (R24OD023041, P40OD010440) and NINDS.
A Defect in Mitochondrial Fatty Acid Synthesis Impairs Iron Metabolism and Causes Elevated Ceramide Levels
Dutta et al., Nature Metabolism. 2023.
https://pubmed.ncbi.nlm.nih.gov/37653044/
Human mitochondrial enoyl coenzyme A reductase (Mecr), required for the last step of mitochondrial fatty acid synthesis (mtFAS), is linked to pediatric-onset neurodegeneration, but with unknown mechanisms. Researchers investigated phenotypes of mecr mutants in Drosophila and human-derived fibroblasts. They found that loss of function of Mecr in the whole body resulted in a defect in Fe-S cluster biogenesis and increased iron levels, leading to elevated ceramide levels and lethality in flies. Similar elevated ceramide levels and impaired iron homeostasis were observed human-derived fibroblasts with Mecr deficiency. Neuronal loss of Mecr led to progressive neurodegeneration in flies. This study pointed out a mechanistic link between mtFAS and neurodegeneration through Mecr. Supported by ORIP (R24OD022005, R24OD031447), NICHD, and NINDS.
Enhanced IL-17 Producing and Maintained Cytolytic Effector Functions of Gut Mucosal CD161+ CD8+ T Cells in SIV-Infected Rhesus Macaques
Thirugnanam et al., Viruses. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535321/
HIV infection is associated with the depletion of CD161-expressing CD4+ Th17 cells, but the effects on other IL-17–producing T cell subsets are not understood fully. Researchers characterized the functions of non-invariant CD161-expressing CD8+ T cell subpopulations in peripheral blood and mucosal tissues of rhesus macaques (sex not specified) during chronic simian immunodeficiency virus (SIV) infection. They demonstrated that cell frequencies and function were unaffected by infection, but enhanced IL-17 production capacity and sustained Th1-type and cytolytic functions were observed. This work suggests that CD161-expressing CD8+ T cells might have important functions in gut mucosal immunity during chronic HIV infection. Supported by ORIP (P51OD011104, S10OD026800), NIAID, NIDDK, and NIMH.
Spontaneous HIV Expression During Suppressive ART Is Associated With the Magnitude and Function of HIV-Specific CD4+ and CD8+ T Cells
Dubé et al., Cell Host Microbe. 2023.
https://linkinghub.elsevier.com/retrieve/pii/S1931-3128(23)00331-1
CD4+ and CD8+ T cells are essential in the control of simian immunodeficiency virus and HIV infections, but the mechanisms are not understood fully. Using multiplexed single-cell RNAflow-fluorescence in situ hybridization, researchers quantified and phenotyped viral reservoirs spontaneously expressing viral RNA and the p24 protein in primary clinical samples from men. They reported associations between active reservoirs and HIV-specific CD4+ and CD8+ T cells, and the active reservoirs were largely dominated by defective proviruses. Their findings suggest that viral reservoirs maintain HIV-specific responses during suppressive antiretroviral therapy (ART), and low-level viral gene expression by spontaneous reservoirs is sufficient to maintain anti-HIV adaptive immunity. Supported by ORIP (P51OD011092) and NIAID.
CD8+ Cells and Small Viral Reservoirs Facilitate Post-ART Control of SIV Replication in M3+ Mauritian Cynomolgus Macaques Initiated on ART Two Weeks Post-Infection
Harwood et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10553806/
A rare group of people infected with HIV can achieve sustainable HIV remission after antiretroviral therapy (ART) withdrawal, but the underlying mechanisms are not understood fully. A team of investigators observed post-treatment control in a cohort of male cynomolgus macaques that were initiated on ART 2 weeks post-infection. Additionally, they reported that the cynomolgus macaques had smaller acute reservoirs than similarly infected rhesus macaques. Collectively, these data suggest that a combination of small reservoirs and immune-mediated virus suppression contributes to post-treatment control in cynomolgus macaques. This model could be used in future studies to develop therapeutic interventions. Supported by ORIP (P51OD011106, P40OD028116), NIAID, and NCI.
Host-Derived Growth Factors Drive ERK Phosphorylation and MCL1 Expression to Promote Osteosarcoma Cell Survival During Metastatic Lung Colonization
McAloney et al., Cellular Oncology. 2023.
https://pubmed.ncbi.nlm.nih.gov/37676378/
Mortality from osteosarcoma is closely linked to lung metastasis, even though the lung appears to be a hostile environment for tumor cells. Using female mice, researchers assessed changes in both host and tumor cells during colonization. Their findings suggest that the mitogen-activated protein kinase (MAPK) pathway is significantly elevated in early and established metastases, which correlates with expression of anti-apoptotic genes (e.g., MCL1). The authors conclude that niche-derived growth factors drive increased MAPK activity and MCL1 expression in osteosarcoma, promoting metastatic colonization. This gene is a promising target for future therapeutic development. Supported by ORIP (K01OD031811), NCI, and NCATS.
The Latent Reservoir of Inducible, Infectious HIV-1 Does Not Decrease Despite Decades of Antiretroviral Therapy
McMyn et al., The Journal of Clinical Investigation. 2023.
https://www.doi.org/10.1172/JCI171554
Antiretroviral therapy (ART) does not eliminate the latent HIV reservoir, but it is unknown whether sustained reservoir decay occurs with long-term ART. Researchers used a quantitative viral outgrowth assay, an intact proviral DNA assay, and proviral sequencing to characterize the latent reservoir in men and women with HIV who had maintained suppression of viral replication on ART for 14 to 27 years. They found that the reservoir decay did not continue with long-term ART. Further studies could provide insight into the mechanism underlying these findings. These results reinforce the need for lifelong ART and indicate that the reservoir remains a major barrier to an HIV-1 cure. Supported by ORIP (R01OD011095), NIAID, and NIDCR.
Long-Acting Lenacapavir Protects Macaques Against Intravenous Challenge With Simian-Tropic HIV
Swanstrom et al., eBioMedicine. 2023.
https://doi.org/10.1016/j.ebiom.2023.104764
Pre-exposure prophylaxis (PrEP) is effective in preventing new HIV infections, but regimen adherence remains a challenge. Antiretrovirals with long-acting pharmacokinetic properties could help overcome this limitation. Researchers examined the protective efficacy of lenacapavir, a first-in-class HIV capsid inhibitor, using male pigtail macaques. They reported that a single administration of the drug provided protection from simian-tropic HIV infection. These data demonstrate the value of this nonhuman primate model and support the clinical development of long-acting lenacapavir for PrEP in humans. Future studies could further explore and refine the drug exposure–efficacy relationship. Supported by ORIP (P40OD028116), NIAID, and NCI.
Large-Scale Production of Human Blastoids Amenable to Modeling Blastocyst Development and Maternal-Fetal Crosstalk
Yu et al., Cell Stem Cell. 2023.
https://www.sciencedirect.com/science/article/abs/pii/S1934590923002850?via%3Dihub=
Human blastoids provide a valuable model to study early human development and implantation with reduced genetic heterogeneity between samples. Investigators reported a protocol for efficient generation of high-fidelity human blastoids from naïve pluripotent stem cells. The similarities between blastoids and blastocysts in signaling activities—demonstrated using single-cell RNA sequencing—support the use of blastoids to model lineage differentiation and cavity formation. Additionally, endometrial stromal effects in promoting trophoblast cell survival, proliferation, and syncytialization during co-culture with blastoids demonstrated the capability to model maternal–fetal crosstalk. The protocol will facilitate broader use of human blastoids as an ethical model for human blastocysts. Supported by ORIP (S10OD028630) and others.
A Novel Auxin-Inducible Degron System for Rapid, Cell Cycle–Specific Targeted Proteolysis
Capece et al., Cell Death and Differentiation. 2023.
https://www.nature.com/articles/s41418-023-01191-4
The discrimination of protein biological functions in different phases of the cell cycle is limited by the lack of experimental approaches that do not require pre-treatment with compounds affecting the cell-cycle progression. Therefore, potential cycle-specific biological functions of a protein of interest could be biased by the effects of cell treatments. The OsTIR1/auxin-inducible degron (AID) system allows “on-demand” selective and reversible protein degradation upon exposure to the phytohormone auxin. However, this technology does not allow researchers to study the effect of acute protein depletion selectively in one phase of the cell cycle, as auxin similarly affects all the treated cells irrespective of their proliferation status. Therefore, the AID system requires coupling with cell synchronization techniques, which can alter the basal biological status of the studied cell population, as with previously available approaches. Here, the investigators introduce the Regulate OsTIR1 Levels based on the Cell Cycle Status (ROLECCS) system, which induces proteolysis of both exogenously transfected and endogenous gene-edited targets in specific phases of the cell cycle. They propose the use of the ROLECCS system as a new and improved way of studying the differential roles that target proteins may have in specific phases of the cell cycle. Supported by ORIP (K01OD031811) and NCI.