Selected Grantee Publications
- Clear All
- 4 results found
- Preservation
- 2025
- 2021
Establishing the Hybrid Rat Diversity Program: A Resource for Dissecting Complex Traits
Dwinell et al., Mammalian Genome. 2025.
https://pubmed.ncbi.nlm.nih.gov/39907792
Rat models have been extensively used for studying human complex disease mechanisms, behavioral phenotypes, and environmental factors and for discovering and developing drugs. Systems genetics approaches have been used to study the effects of both genetic variation and environmental factors. This approach recognizes the complexity of common disorders and uses intermediate phenotypes to find relationships between genetic variation and clinical traits. This article describes the Hybrid Rat Diversity Program (HDRP) at the Medical College of Wisconsin, which involves 96 inbred rat strains and aims to provide a renewable and reusable resource in terms of the HRDP panel of inbred rat strains, the genomic data derived from the HRDP strains, and banked resources available for additional studies. Supported by ORIP (R24OD024617) and NHLBI.
Nonhuman Primate Models for SARS-CoV-2 Research: Cryopreservation as a Means to Maintain Critical Models and Enhance the Genetic Diversity of Colonies
Arnegard and Hild et al., Lab Animal. 2021.
https://doi.org/10.1038/s41684-021-00792-1
This commentary, written by ORIP staff, addresses the need for improved cryopreservation methods and resources for nonhuman primate (NHP) gametes and embryos to safeguard newly developed NHP models and enhance the genetic diversity of NHP colonies without reliance on animal importations. Cryopreservation also plays critical roles in medical approaches to preserve the fertility of patients who must undergo potentially gonadotoxic treatments, as well as nascent genome editing efforts to develop new NHP models for human diseases. Given these diverse benefits to research progress, ORIP continues to fund the development of cryopreservation tools and approaches for NHPs and other animal models.
Cryopreservation and Preparation of Thawed Spermatozoa from Rhesus Macaques (Macaca mulatta) for In Vitro Fertilization
De Carvalho et al., Journal of the American Association for Laboratory Animal Science. 2021.
https://www.ingentaconnect.com/content/aalas/jaalas/pre-prints/content-jaalas-20-000028
Optimizing procedures for cryopreservation and subsequent thawing for rhesus macaques is required to prevent cryodamage that negatively impacts artificial insemination and in vitro fertilization rates. Investigators systematically assessed two cryopreservation methods and four recovery methods in three interdependent experiments. Results demonstrated that slow-freezing, coupled with density gradient centrifugation provided the highest efficacy in functional sperm for in vitro use. Additional studies are required to further optimize sperm cryopreservation in rhesus macaques. Supported by ORIP (P51OD011092).
Cryopreservation Method for Drosophila melanogaster Embryos
Zhan et al., Nature Communications. 2021.
https://www.nature.com/articles/s41467-021-22694-z
Drosophila melanogaster is a premier model for biomedical research. However, preservation of Drosophila stocks is labor intensive and costly. Researchers at University of Minnesota reported an efficient method for cryopreservation by optimizing key steps including embryo permeabilization and cryoprotectant agent loading. This method resulted in more than 10% of embryos developing into fertile adults after cryopreservation for 25 distinct strains from different sources. The further optimization and wide adoption of this protocol will solve the long-standing issue in reliably preserving Drosophila stocks and will significantly impact Drosophila as a model organism for biomedical research. Supported by ORIP (R21OD028758) and NIGMS.