Selected Grantee Publications
- Clear All
- 3 results found
- Preservation
- 2024
- 2020
Establishment of a Practical Sperm Cryopreservation Pathway for the Axolotl (Ambystoma mexicanum): A Community-Level Approach to Germplasm Repository Development
Coxe et al., Animals (Basel). 2024.
https://pubmed.ncbi.nlm.nih.gov/38254376/
The axolotl (Ambystoma mexicanum) is an important biomedical research model for organ regeneration, but housing and maintaining live animals is expensive and risky as new transgenic lines are developed. The authors report an initial practical pathway for sperm cryopreservation to support germplasm repository development. They assembled a pathway through the investigation of axolotl sperm collection by stripping, refrigerated storage in various osmotic pressures, cryopreservation in various cryoprotectants, and in vitro fertilization using thawed sperm. This work is the first report of successful production of axolotl offspring with cryopreserved sperm and provides a general framework for pathway development to establish Ambystoma germplasm repositories for future research and applications. Supported by ORIP (R24OD010441, R24OD028443, P40OD019794).
Conduction-Dominated Cryomesh for Organism Vitrification
Guo et al., Advanced Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/38018294/
Vitrification-based cryopreservation via cryomesh is a promising approach for maintaining biodiversity, health care, and sustainable food production via long-term preservation of biological systems. Here, researchers conducted a series of experiments aimed at optimizing the cooling and rewarming rates of cryomesh to increase the viability of various cryopreserved biosystems. They found that vitrification was significantly improved by increasing thermal conductivity, reducing mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier of the conduction-dominated cryomesh. Cooling rates increased twofold to tenfold in a variety of biosystems. The conduction-dominated cryomesh improved the cryopreservation outcomes of coral larvae, Drosophila embryos, and zebrafish embryos by vitrification. These findings suggest that the conduction-dominated cryomesh can improve vitrification in such biosystems for biorepositories, agriculture and aquaculture, and research. Supported by ORIP (R24OD028444, R21OD028758, R24OD034063, R21OD028214), NIDDK, and NIGMS.
3-D Printed Customizable Vitrification Devices for Preservation of Genetic Resources of Aquatic Species
Tiersch et al., Aquacultural Engineering. 2020.
https://www.sciencedirect.com/science/article/pii/S0144860920300406
Sperm vitrification as an alternative approach to conventional cryopreservation allows quick and low-cost sample preservation and is suitable for small-bodied aquatic species with miniscule testis, fieldwork at remote locations, and small-scale freezing for research purposes. Tiersch et al. report the developing of operational prototypes of 3-dimensional (3-D) printed vitrification devices. This study demonstrated the feasibility of developing standardized low-cost devices fabricated by 3-D printing with functions including vitrification, volume control, labeling, protection, and storage. These prototypes can be further developed to assist development of germplasm repositories to protect the genetic resources of aquatic species by breeders, hatcheries, aquariums, and researchers. Supported by ORIP (R24OD010441).