Selected Grantee Publications
- Clear All
- 38 results found
- Imaging
- Spectrometry
- 2024
Stat3 Mediates Fyn Kinase-Driven Dopaminergic Neurodegeneration and Microglia Activation
Siddiqui et al., Disease Models & Mechanisms. 2024.
https://pubmed.ncbi.nlm.nih.gov/39641161
The FYN gene is a risk locus for Alzheimer’s disease and several other neurodegenerative disorders. FYN encodes Fyn kinase, and previous studies have shown that Fyn signaling in dopaminergic neurons and microglia plays a role during neurodegeneration. This study investigated Fyn signaling using zebrafish that express a constitutively active Fyn Y531F mutant in neural cells. Activated neural Fyn signaling in the mutant animals resulted in dopaminergic neuron loss and induced inflammatory cytokine expression when compared with controls. Transcriptomic and chemical inhibition analyses revealed that Fyn-driven changes were dependent on the Stat3 and NF-κB signaling pathways, which work synergistically to activate neuronal inflammation and degeneration. This study provides insight into the mechanisms underlying neurodegeneration, identifying Stat3 as a novel effector of Fyn signaling and a potential translational target. Supported by ORIP (R24OD020166).
Proinflammatory Cytokines Suppress Stemness-Related Properties and Expression of Tight Junction in Canine Intestinal Organoids
Nakazawa et al., In Vitro Cellular & Developmental Biology—Animal. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11419940
Cells in the gastrointestinal tract are exposed to numerous stressors that can promote excessive inflammation, including environmental chemicals and dietary substances. Researchers studied how canine intestinal epithelial cell (IEC)–derived organoids responded to exposure to one of three proinflammatory cytokines; interferon-γ (IFN-γ), tumor necrosis factor-α (TNFα), or interleukin-1β (IL1β). Exposure to IFN-γ resulted in downregulation of the stem cell marker Lgr5. Only IFN-γ exposure resulted in increased production of caspase 3 and caspase 8. Exposure to either IFN-γ or IL1β resulted in suppressed cell proliferation. The pro-inflammatory cytokines caused reduced tight junction protein expression and compromised membrane integrity. These findings are important to understanding IEC response to different inflammatory stimuli and to broadening knowledge of gut physiology. Supported by ORIP (K01OD030515, R21OD031903).
Temperature-Dependent Alterations in the Proteome of the Emergent Fish Pathogen Edwardsiella piscicida
Jacobsen et al., Journal of Fish Diseases. 2024.
https://pubmed.ncbi.nlm.nih.gov/39304982
Reported outbreaks of Edwardsiella piscicida, a bacterial pathogen among cultured and wild fish, have been steadily increasing over the past decade in tandem with climate change–mediated increases in water temperatures. The capacity for this increasingly prevalent fish pathogen to infect and cause disease in mammals is important to understand. Researchers examined the role of temperature on the virulence of E. piscicida to understand its pathogenesis in the context of climate warming trends and better understand its zoonotic potential. Findings revealed downregulation of virulence-related proteins, such as flagellar and Type VI secretion system proteins, at colder temperatures. These findings highlight the potential environmental factors influencing the pathogen’s threat to aquaculture and public health. Supported by ORIP (S10OD026918, T32OD011147).
Extended Survival of 9- and 10-Gene-Edited Pig Heart Xenografts With Ischemia Minimization and CD154 Costimulation Blockade-Based Immunosuppression
Chaban et al., The Journal of Heart and Lung Transplantation. 2024.
https://pubmed.ncbi.nlm.nih.gov/39097214
Heart transplantations are severely constrained from the shortage of available organs derived from human donors. Xenotransplantation of hearts from gene-edited (GE) pigs is a promising way to address this problem. Researchers evaluated GE pig hearts with varying knockouts and human transgene insertions. Human transgenes are introduced to mitigate important physiological incompatibilities between pig cells and human blood. Using a baboon heterotopic cardiac transplantation model, one female and seven male specific-pathogen-free baboons received either a 3-GE, 9-GE, or 10-GE pig heart with an immunosuppression regimen targeting CD40/CD154. Early cardiac xenograft failure with complement activation and multifocal infarcts were observed with 3-GE pig hearts, whereas 9- and 10-GE pig hearts demonstrated successful graft function and prolonged survival. These findings show that one or more transgenes of the 9- and 10-GE pig hearts with CD154 blockade provide graft protection in this preclinical model. Supported by ORIP (U42OD011140) and NIAID.
Impaired Axon Initial Segment Structure and Function in a Model of ARHGEF9 Developmental and Epileptic Encephalopathy
Wang et al., PNAS. 2024.
https://www.pnas.org/doi/10.1073/pnas.2400709121
Researchers developed a mouse model carrying the G55A missense variant identified in ARHGEF9 patients with severe epilepsy and neurodevelopmental phenotypes. Using male Arhgef9G55A mice, this study examined behavioral, molecular, and electrophysiological phenotypes in the Arhgef9G55A model of developmental and epileptic encephalopathies (DEE). Researchers found that the G55A variant causes disruption of inhibitory postsynaptic organization and axon initial segment (AIS) architecture, leading to impairment of both synaptic transmission and action potential generation. The effects of Arhgef9G55A on neuronal function affect both intrinsic and synaptic excitability and preferentially impair AIS. These findings indicate a novel pathological mechanism of DEE and represent a unique example of a neuropathological condition converging from AIS dysfunctions. Supported by ORIP (U54OD020351, U54OD030187, U54OD020351, S10OD026974) and NINDS.
Characterization of Collaborative Cross Mouse Founder Strain CAST/EiJ as a Novel Model for Lethal COVID-19
Baker et al., Scientific Reports. 2024.
https://www.nature.com/articles/s41598-024-77087-1
Researchers characterized the Collaborative Cross (CC) mouse model founder strain CAST/EiJ as a novel model for severe COVID-19, exhibiting high viral loads and mortality. By leveraging genetically diverse CC strains, this study identified variations in susceptibility and survival against SARS-CoV-2 variants. CAST/EiJ mice developed lung pathology and mortality despite antiviral defenses, making them a valuable tool for understanding host–pathogen interactions. The findings emphasize the utility of diverse animal models in uncovering genetic and immunological factors that influence disease outcomes, facilitating the development of targeted therapies against COVID-19 to mitigate future pandemics. Supported by ORIP (P40OD011102).
Placental Gene Therapy in Nonhuman Primates: A Pilot Study of Maternal, Placental, and Fetal Response to Non-Viral, Polymeric Nanoparticle Delivery of IGF1
Wilson et al., Molecular Human Reproduction. 2024.
https://academic.oup.com/molehr/article/30/11/gaae038/7876288#493719584
This study investigates a novel nanoparticle-mediated gene therapy approach for addressing fetal growth restriction (FGR) in pregnant female nonhuman primates. Using polymer-based nanoparticles delivering a human insulin-like growth factor 1 (IGF1) transgene, the therapy targets the placenta via ultrasound-guided injections. Researchers evaluated maternal, placental, and fetal responses by analyzing tissues, immunomodulatory proteins, and hormones (progesterone and estradiol). Findings highlight the potential of IGF1 nanoparticles to correct placental insufficiency by enhancing fetal growth, providing a groundbreaking advancement for in utero treatments. This research supports further exploration of nonviral gene therapies for improving pregnancy outcomes and combating FGR-related complications. Supported by ORIP (P51OD011106) and NICHD.