Selected Grantee Publications
- Clear All
- 7 results found
- CRISPR
- Preservation
- 2023
Simian Immunodeficiency Virus and Storage Buffer: Field-Friendly Preservation Methods for RNA Viral Detection in Primate Feces
Wilde et al., mSphere. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732032/
Simian immunodeficiency virus (SIV) infects more than 40 nonhuman primate (NHP) species in sub-Saharan Africa, but testing in wild NHP populations can be challenging. Researchers compared methods for SIV RNA preservation and recovery from NHP fecal samples stored in four different buffers. The goal of this work was to identify a robust “field-friendly” method (i.e., without freezing or refrigeration) for this effort, and the samples were collected from a mantled guereza colobus housed at the Columbus Zoo and Aquarium. The authors reported that the DNA/RNA shield is an optimal buffer for preserving SIV RNA in fecal samples in the field. Their findings will inform future fieldwork and facilitate improved approaches for studies of SIV and other RNA viruses. Supported by ORIP (P51OD011132) and NIAID.
Prime Editing–Mediated Correction of the CFTR W1282X Mutation in iPSCs and Derived Airway Epithelial Cells
Li et al., PLOS ONE. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686454/
Cystic fibrosis (CF) is caused by recessive mutations in the CF transmembrane conductance regulator (CFTR) gene. Correction of nonsense CFTR mutations, which affects 10% of CF patients, via genomic editing represents a promising therapeutic approach. In this study, investigators tested whether prime editing can be applied as a potential therapeutic modality. Induced pluripotent stem cells (iPSCs) from a CF patient homozygous for the CFTR W1282X mutation were used. Studies demonstrated that prime editing corrected mutant allele in iPSCs, which effectively restored CFTR function in iPSC-derived airway epithelial cells and organoids. Supported by ORIP (R01OD01026594).
Zebrafish as a High Throughput Model for Organ Preservation and Transplantation Research
Da Silveira Cavalcante et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300076R
Organ transplantation increases the quality of life and life expectancy of patients with chronic end-stage diseases, but the preservation of organs for transplantation remains a significant barrier. In the current study, researchers demonstrate the value of zebrafish as a high-throughput model organism in the fields of solid-organ preservation and transplantation, with a focus on heart preservation via partial freezing. Their techniques have the potential to advance research in the fields of cryobiology and solid-organ transplantation. Supported by ORIP (R24OD031955) and NHLBI.
Focused Ultrasound–Mediated Brain Genome Editing
Lao et al., PNAS. 2023.
https://www.pnas.org/doi/epdf/10.1073/pnas.2302910120
Gene editing in the brain has been challenging because of the restricted transport imposed by the blood–brain barrier (BBB). In this study, investigators described a safe and effective gene‑editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR machinery to the brain in mice. By combining FUS with adeno-associated virus–mediated gene delivery, researchers can achieve more than 25% editing efficiency of particular cell types. This method has the potential to expand toolkit options for CRISPR delivery and opens opportunities for treating diseases of the brain, such as neurodegenerative disorders, with somatic genome editing. Supported by ORIP (U42OD026635) and NINDS.
Whole Genome Analysis for 163 gRNAs in Cas9-Edited Mice Reveals Minimal Off-Target Activity
Peterson et al., Communications Biology. 2023.
https://www.nature.com/articles/s42003-023-04974-0
CRISPR/Cas9 genome editing offers potential as a treatment for genetic diseases in humans. Using whole-genome sequencing, investigators assessed the occurrence of Streptococcus pyogenes Cas9–induced off-target mutagenesis in Cas9-edited founder mice. Sequencing and computational analysis indicate that the risk of Cas9 cutting at predicted off-target sites is lower than random genetic variation introduced into the genomes of inbred mice through mating. These findings will inform future design and use of Cas9-edited animal models and can provide context for evaluating off-target potential in genetically diverse patient populations. Supported by ORIP (UM1OD023221, UM1OD023222) and NHGRI.
Identification of a Heterogeneous and Dynamic Ciliome during Embryonic Development and Cell Differentiation
Elliott et al., Development. 2023.
Ciliopathies are a class of diseases that arise when the structure or function of the cilium is compromised. To definitively determine the extent of heterogeneity within the ciliome, investigators compared the ciliomes of six distinct embryonic domains. The data comprehensively revealed that about 30% of the ciliome is differentially expressed across analyzed tissues in the developing embryo. Furthermore, upregulation of numerous ciliary genes correlated with osteogenic cell-fate decisions, suggesting that changes in the ciliome contribute to distinct functions of cell types in vertebrate species. Supported by ORIP (UM1OD023222), NIDCR, and NIGMS.
Elevated Transferrin Receptor Impairs T Cell Metabolism and Function in Systemic Lupus Erythematosus
Voss et al., Science Immunol. 2023.
https://www.science.org/doi/10.1126/sciimmunol.abq0178
Systemic lupus erythematosus (SLE) is an autoimmune disease in which dysfunctional T cells exhibit abnormalities in metabolism. Investigators performed a CRISPR screen to examine mechanisms associated with the role of excess iron in dysfunctional T cells. The transferrin receptor (CD71) was identified as differentially critical for Type 1 T helper cells and inhibitory for induced regulatory T cells. Activated T cells induced CD71 and iron uptake, which was exaggerated in SLE-prone T cells. Disease severity correlated with CD71 expression in cells from male and female patients with SLE, and blocking CD71 in vitro enhanced interleukin 10 secretion. These findings suggest that T cell iron uptake via CD71 contributes to T cell dysfunction and can be targeted to limit SLE-associated pathology. Supported by ORIP (S10OD030264), NIAID, NCI, and NIDDK.