Selected Grantee Publications
- Clear All
- 109 results found
- CRISPR
- Microscopy
Anti–PD-1 Chimeric Antigen Receptor T Cells Efficiently Target SIV-Infected CD4+ T Cells in Germinal Centers
Eichholtz et al., The Journal of Clinical Investigation. 2024.
https://pubmed.ncbi.nlm.nih.gov/38557496/
Researchers conducted adoptive transfer of anti–programmed cell death protein 1 (PD-1) chimeric antigen receptor (CAR) T cells in simian immunodeficiency virus (SIV)–infected rhesus macaques of both sexes on antiretroviral therapy (ART). In some macaques, anti–PD-1 CAR T cells expanded and persisted concomitant with the depletion of PD-1+ memory T cells—including lymph node CD4+ follicular helper T cells—associated with depletion of SIV RNA from the germinal center. Following CAR T infusion and ART interruption, SIV replication increased in extrafollicular portions of lymph nodes, plasma viremia was higher, and disease progression accelerated, indicating that anti–PD-1 CAR T cells depleted PD-1+ T cells and eradicated SIV from this immunological sanctuary. Supported by ORIP (U42OD011123, U42OD010426, P51OD010425, P51OD011092), NCI, NIAID, and NIDDK.
Novel Off-Targeting Events Identified After Genome Wide Analysis of CRISPR-Cas Edited Pigs
Redel et al., The CRISPR Journal. 2024.
https://pubmed.ncbi.nlm.nih.gov/38770737/
CRISPR technology has revolutionized the production of unconventional models, such as gene-edited pigs, for both agricultural and biomedical applications; however, concerns remain regarding the possibility of introducing unwanted modifications in the genome. In this study, researchers demonstrate a pipeline to comprehensively identify off-targeting events on a global scale in the genome of three different gene-edited pig models. They confirmed two known off-targeting events and identified other presumably off-target loci. Their work offers a simplified approach to detecting off-targeting events in an unknown genetic background and increases the value of the pig as a preclinical model. Supported by ORIP (R01OD035561) and NIA.
Synthetic Protein Circuits for Programmable Control of Mammalian Cell Death
Xia et al., Cell. 2024.
https://pubmed.ncbi.nlm.nih.gov/38657604/
Natural cell-death pathways have been shown to eliminate harmful cells and shape immunity. Researchers used synthetic protein-level cell-death circuits, collectively termed “synpoptosis” circuits, to proteolytically regulate engineered executioner proteins and mammalian cell death. They show that the circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. This work provides a foundation for programmable control of mammalian cell death. Future studies could focus on programmable control of cell death in various contexts, including cancer, senescence, fibrosis, autoimmunity, and infection. Supported by ORIP (F30OD036190) and NIBIB.
Disruption of Myelin Structure and Oligodendrocyte Maturation in a Macaque Model of Congenital Zika Infection
Tisoncik-Go et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49524-2
Maternal infection during pregnancy can have severe consequences on fetal development and survival. Using a pigtail macaque model for Zika virus infection, researchers show that in utero exposure of a fetus to Zika virus due to maternal infection results in significantly decreased myelin formation around neurons. Myelin is a protective sheath that forms around neurons and is required for brain processing speed. This study suggests that reduced myelin resulting from Zika infection in utero is likely a contributing factor to severe deficits in brain development and microcephaly. Supported by ORIP (P51OD010425), NEI, and NIAID.
AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys
Liang et al., Human Gene Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38767512/
Genome editing in somatic cells and tissues has the potential to provide long-term expression of therapeutic proteins to treat a variety of genetic lung disorders. However, delivering genome-editing machinery to disease-relevant cell types in the lungs of primates has remained a challenge. Investigators of this article are participating in the NIH Somatic Cell Genome Editing Consortium. Herein, they demonstrate that intratracheal administration of a dual adeno-associated virus type 5 vector encoding CRISPR/Cas9 can mediate genome editing in rhesus (male and female) airways. Up to 8% editing was observed in lung lobes, including a housekeeping gene, GAPDH, and a disease-related gene, angiotensin-converting enzyme 2. Using single-nucleus RNA-sequencing, investigators systematically characterized cell types transduced by the vector. Supported by ORIP (P51OD01110, U42OD027094, S10OD028713), NCATS, NCI, and NHLBI.
Engineered IgM and IgG Cleaving Enzymes for Mitigating Antibody Neutralization and Complement Activation in AAV Gene Transfer
Smith et al., Molecular Therapy. 2024.
https://www.sciencedirect.com/science/article/pii/S1525001624003058?via%3Dihub=
Recombinant adeno-associated viral (AAV) vectors have emerged as the leading platform for therapeutic gene transfer, but systemic dosing of AAV vectors poses potential risk of adverse side effects, including complement activation triggered by anti-capsid immunity. In this study, investigators discovered an IgM cleaving enzyme (IceM) that degrades human IgM, a key trigger in the anti-AAV immune cascade. They engineered a fusion enzyme (IceMG) with dual proteolytic activity against human IgM and IgG. Antisera from animals treated with IceMG show decreased ability to neutralize AAV and activate complement. These studies have implications for improving the safety of AAV gene therapies and offer broader applications, including for organ transplantation and autoimmune diseases. Supported by ORIP (P51OD011107, U42OD027094), NHLBI, and NIAID.
Loss of Lymphatic IKKα Disrupts Lung Immune Homeostasis, Drives BALT Formation, and Protects Against Influenza
Cully et al., Immunohorizons. 2024.
https://pubmed.ncbi.nlm.nih.gov/39007717/
Tertiary lymphoid structures (TLS) have context-specific roles, and more work is needed to understand how they function in separate diseases to drive or reduce pathology. Researchers showed previously that lymph node formation is ablated in mice constitutively lacking IκB kinase alpha (IKKα) in lymphatic endothelial cells (LECs). In this study, they demonstrated that loss of IKKα in lymphatic endothelial cells leads to the formation of bronchus-associated lymphoid tissue in the lung. Additionally, they showed that male and female mice challenged with influenza A virus (IAV) exhibited markedly improved survival rates and reduced weight loss, compared with littermate controls. They concluded that ablating IKKα in this tissue reduces the susceptibility of the mice to IAV infection through a decrease in proinflammatory stimuli. This work provides a new model to explore the mechanisms of TLS formation and the immunoregulatory function of lung lymphatics. Supported by ORIP (T35OD010919), NHLBI, NIAID, and NIAMS.
Vaccination Induces Broadly Neutralizing Antibody Precursors to HIV gp41
Schiffner et al., Nature Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38816615
Primary immunogens that induce rare broadly neutralizing antibody (bnAb) precursor B cells are needed to develop vaccines against viruses of high antigenic diversity. 10E8-class bnAbs must possess a long, heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. Researchers developed germline-targeting epitope scaffolds with an affinity for 10E8-class precursors that exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens. Protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. This study showed that germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features. Supported by ORIP (P51OD011132, U42OD011023), NIAID, and NIGMS.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Obesity Causes Mitochondrial Fragmentation and Dysfunction in White Adipocytes Due to RalA Activation
Xia et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38286821/
This study presents a molecular mechanism for mitochondrial dysfunction as a characteristic trait of obesity. Chronic activation of the small GTPase RalA in inguinal white adipocytes (iWAT), in male mice fed a high-fat diet (HFD) represses energy expenditure by shifting mitochondrial dynamics toward excessive fission, contributing to weight gain and metabolic dysfunction. Targeted deletion of RalA in iWAT attenuated HFD-induced obesity due to increased energy expenditure and mitochondrial oxidative phosphorylation. Mechanistically, RalA dephosphorylates inhibitory Serine637 on fission protein Drp1, leading to excessive fission in adipocytes and mitochondrial fragmentation. Expression of a human homolog of Drp1—DNM1L—in adipose tissue is positively correlated with obesity and insulin resistance. These findings open avenues to investigate RalA-Drp1 axis in energy homeostasis. Supported by ORIP (S10OD023527), NCI, NHLBI, and NIDDK.