Selected Grantee Publications
- Clear All
- 290 results found
- Genetics
- Microscopy
Evolution of the Clinical-Stage Hyperactive TcBuster Transposase as a Platform for Robust Non-Viral Production of Adoptive Cellular Therapies
Skeate et al., Molecular Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38627969/
In this study, the authors report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieve high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. This proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improved survival in a Burkitt lymphoma xenograft model in vivo. Their work suggests that TcB-M is a versatile, safe, efficient, and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition. Supported by ORIP (F30OD030021), NCI, NHLBI, and NIAID.
Novel Off-Targeting Events Identified After Genome Wide Analysis of CRISPR-Cas Edited Pigs
Redel et al., The CRISPR Journal. 2024.
https://pubmed.ncbi.nlm.nih.gov/38770737/
CRISPR technology has revolutionized the production of unconventional models, such as gene-edited pigs, for both agricultural and biomedical applications; however, concerns remain regarding the possibility of introducing unwanted modifications in the genome. In this study, researchers demonstrate a pipeline to comprehensively identify off-targeting events on a global scale in the genome of three different gene-edited pig models. They confirmed two known off-targeting events and identified other presumably off-target loci. Their work offers a simplified approach to detecting off-targeting events in an unknown genetic background and increases the value of the pig as a preclinical model. Supported by ORIP (R01OD035561) and NIA.
Synthetic Protein Circuits for Programmable Control of Mammalian Cell Death
Xia et al., Cell. 2024.
https://pubmed.ncbi.nlm.nih.gov/38657604/
Natural cell-death pathways have been shown to eliminate harmful cells and shape immunity. Researchers used synthetic protein-level cell-death circuits, collectively termed “synpoptosis” circuits, to proteolytically regulate engineered executioner proteins and mammalian cell death. They show that the circuits direct cell death modes, respond to combinations of protease inputs, and selectively eliminate target cells. This work provides a foundation for programmable control of mammalian cell death. Future studies could focus on programmable control of cell death in various contexts, including cancer, senescence, fibrosis, autoimmunity, and infection. Supported by ORIP (F30OD036190) and NIBIB.
Disruption of Myelin Structure and Oligodendrocyte Maturation in a Macaque Model of Congenital Zika Infection
Tisoncik-Go et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49524-2
Maternal infection during pregnancy can have severe consequences on fetal development and survival. Using a pigtail macaque model for Zika virus infection, researchers show that in utero exposure of a fetus to Zika virus due to maternal infection results in significantly decreased myelin formation around neurons. Myelin is a protective sheath that forms around neurons and is required for brain processing speed. This study suggests that reduced myelin resulting from Zika infection in utero is likely a contributing factor to severe deficits in brain development and microcephaly. Supported by ORIP (P51OD010425), NEI, and NIAID.
AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys
Liang et al., Human Gene Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38767512/
Genome editing in somatic cells and tissues has the potential to provide long-term expression of therapeutic proteins to treat a variety of genetic lung disorders. However, delivering genome-editing machinery to disease-relevant cell types in the lungs of primates has remained a challenge. Investigators of this article are participating in the NIH Somatic Cell Genome Editing Consortium. Herein, they demonstrate that intratracheal administration of a dual adeno-associated virus type 5 vector encoding CRISPR/Cas9 can mediate genome editing in rhesus (male and female) airways. Up to 8% editing was observed in lung lobes, including a housekeeping gene, GAPDH, and a disease-related gene, angiotensin-converting enzyme 2. Using single-nucleus RNA-sequencing, investigators systematically characterized cell types transduced by the vector. Supported by ORIP (P51OD01110, U42OD027094, S10OD028713), NCATS, NCI, and NHLBI.
Engineered IgM and IgG Cleaving Enzymes for Mitigating Antibody Neutralization and Complement Activation in AAV Gene Transfer
Smith et al., Molecular Therapy. 2024.
https://www.sciencedirect.com/science/article/pii/S1525001624003058?via%3Dihub=
Recombinant adeno-associated viral (AAV) vectors have emerged as the leading platform for therapeutic gene transfer, but systemic dosing of AAV vectors poses potential risk of adverse side effects, including complement activation triggered by anti-capsid immunity. In this study, investigators discovered an IgM cleaving enzyme (IceM) that degrades human IgM, a key trigger in the anti-AAV immune cascade. They engineered a fusion enzyme (IceMG) with dual proteolytic activity against human IgM and IgG. Antisera from animals treated with IceMG show decreased ability to neutralize AAV and activate complement. These studies have implications for improving the safety of AAV gene therapies and offer broader applications, including for organ transplantation and autoimmune diseases. Supported by ORIP (P51OD011107, U42OD027094), NHLBI, and NIAID.
Acquired Dysfunction of CFTR Underlies Cystic Fibrosis-Like Disease of the Canine Gallbladder
Gookin et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39041675/
Mucocele formation in dogs is pathologically similar to cystic fibrosis. In this study, researchers investigated the role of cystic fibrosis transmembrane conductance regulator (CFTR) in the pathogenesis of the disease. They determined the location and frequency of disease-associated variants in the coding region of CFTR using whole-genome sequence data from 2,642 dogs representing breeds at low risk, high risk, or with confirmed disease. The authors’ findings establish significant loss of CFTR-dependent anion secretion by mucocele gallbladder mucosa. There were no significant differences in CFTR gene variant frequency, type, or predicted impact comparing low-risk, high-risk, and definitively diagnosed groups of dogs. Their results suggest a disease of the canine gallbladder that is similar to cystic fibrosis and is driven by CFTR dysfunction. Supported by ORIP (T35OD011070, K01OD027058).
Loss of Lymphatic IKKα Disrupts Lung Immune Homeostasis, Drives BALT Formation, and Protects Against Influenza
Cully et al., Immunohorizons. 2024.
https://pubmed.ncbi.nlm.nih.gov/39007717/
Tertiary lymphoid structures (TLS) have context-specific roles, and more work is needed to understand how they function in separate diseases to drive or reduce pathology. Researchers showed previously that lymph node formation is ablated in mice constitutively lacking IκB kinase alpha (IKKα) in lymphatic endothelial cells (LECs). In this study, they demonstrated that loss of IKKα in lymphatic endothelial cells leads to the formation of bronchus-associated lymphoid tissue in the lung. Additionally, they showed that male and female mice challenged with influenza A virus (IAV) exhibited markedly improved survival rates and reduced weight loss, compared with littermate controls. They concluded that ablating IKKα in this tissue reduces the susceptibility of the mice to IAV infection through a decrease in proinflammatory stimuli. This work provides a new model to explore the mechanisms of TLS formation and the immunoregulatory function of lung lymphatics. Supported by ORIP (T35OD010919), NHLBI, NIAID, and NIAMS.
Time of Sample Collection Is Critical for the Replicability of Microbiome Analyses
Allaband et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38951660/
Lack of replicability remains a challenge in microbiome studies. As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design will be critical. Researchers conducted a retrospective analysis of 16S amplicon sequencing studies in male mice. They report that sample collection time affects the conclusions drawn from microbiome studies. The lack of consistency in the time of sample collection could help explain poor cross-study replicability in microbiome research. The effect of diurnal rhythms on the outcomes and study designs of other fields is unknown but is likely significant. Supported by ORIP (T32OD017863), NCATS, NCI, NHLBI, NIAAA, NIAID, NIBIB, NIDDK, and NIGMS.
Genetic Diversity of 1,845 Rhesus Macaques Improves Genetic Variation Interpretation and Identifies Disease Models
Wang et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-49922-6
Nonhuman primates are ideal models for certain human diseases, including retinal and neurodevelopmental disorders. Using a reverse genetics approach, researchers profiled the genetic diversity of rhesus macaque populations across eight primate research centers in the United States and uncovered rhesus macaques carrying naturally occurring pathogenic mutations. They identified more than 47,000 single-nucleotide variants in 374 genes that had been previously linked with retinal and neurodevelopmental disorders in humans. These newly identified variants can be used to study human disease pathology and to test novel treatments. Supported by ORIP (P51OD011107, P51OD011106, P40OD012217, S10OD032189), NEI, NIAID, and NIMH.