Selected Grantee Publications
Whole Genome Analysis for 163 gRNAs in Cas9-Edited Mice Reveals Minimal Off-Target Activity
Peterson et al., Communications Biology. 2023.
https://www.nature.com/articles/s42003-023-04974-0
CRISPR/Cas9 genome editing offers potential as a treatment for genetic diseases in humans. Using whole-genome sequencing, investigators assessed the occurrence of Streptococcus pyogenes Cas9–induced off-target mutagenesis in Cas9-edited founder mice. Sequencing and computational analysis indicate that the risk of Cas9 cutting at predicted off-target sites is lower than random genetic variation introduced into the genomes of inbred mice through mating. These findings will inform future design and use of Cas9-edited animal models and can provide context for evaluating off-target potential in genetically diverse patient populations. Supported by ORIP (UM1OD023221, UM1OD023222) and NHGRI.
Identification of a Heterogeneous and Dynamic Ciliome during Embryonic Development and Cell Differentiation
Elliott et al., Development. 2023.
Ciliopathies are a class of diseases that arise when the structure or function of the cilium is compromised. To definitively determine the extent of heterogeneity within the ciliome, investigators compared the ciliomes of six distinct embryonic domains. The data comprehensively revealed that about 30% of the ciliome is differentially expressed across analyzed tissues in the developing embryo. Furthermore, upregulation of numerous ciliary genes correlated with osteogenic cell-fate decisions, suggesting that changes in the ciliome contribute to distinct functions of cell types in vertebrate species. Supported by ORIP (UM1OD023222), NIDCR, and NIGMS.