Selected Grantee Publications
Engineered IgM and IgG Cleaving Enzymes for Mitigating Antibody Neutralization and Complement Activation in AAV Gene Transfer
Smith et al., Molecular Therapy. 2024.
https://www.sciencedirect.com/science/article/pii/S1525001624003058?via%3Dihub=
Recombinant adeno-associated viral (AAV) vectors have emerged as the leading platform for therapeutic gene transfer, but systemic dosing of AAV vectors poses potential risk of adverse side effects, including complement activation triggered by anti-capsid immunity. In this study, investigators discovered an IgM cleaving enzyme (IceM) that degrades human IgM, a key trigger in the anti-AAV immune cascade. They engineered a fusion enzyme (IceMG) with dual proteolytic activity against human IgM and IgG. Antisera from animals treated with IceMG show decreased ability to neutralize AAV and activate complement. These studies have implications for improving the safety of AAV gene therapies and offer broader applications, including for organ transplantation and autoimmune diseases. Supported by ORIP (P51OD011107, U42OD027094), NHLBI, and NIAID.
Vaccination Induces Broadly Neutralizing Antibody Precursors to HIV gp41
Schiffner et al., Nature Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38816615
Primary immunogens that induce rare broadly neutralizing antibody (bnAb) precursor B cells are needed to develop vaccines against viruses of high antigenic diversity. 10E8-class bnAbs must possess a long, heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. Researchers developed germline-targeting epitope scaffolds with an affinity for 10E8-class precursors that exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens. Protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. This study showed that germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features. Supported by ORIP (P51OD011132, U42OD011023), NIAID, and NIGMS.
Physiologically Based Pharmacokinetic Model Validated to Enable Predictions of Multiple Drugs in a Long-Acting Drug-Combination Nano-Particles (DcNP): Confirmation With 3 HIV Drugs, Lopinavir, Ritonavir, and Tenofovir in DcNP Products
Perazzolo et al., Journal of Pharmaceutical Sciences. 2024.
https://jpharmsci.org/article/S0022-3549(24)00060-1/fulltext
Drug-combination nanoparticles synchronize delivery of multiple drugs in a single, long-acting, targeted dose. Two distinct classes of long-acting injectable products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site, and Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access. This review used data from three nonhuman primate studies, consisting of nine pharmacokinetic data sets, to support clinical development of Class II products. Eight of nine models passed validation, and the drug–drug interaction identified in the ninth model can be accounted for in the final model. Supported by ORIP (P51OD010425, U42OD011123), NIAID, and NHLBI.
Surgical Protocol for Partial Heart Transplantation in Growing Piglets
Medina, World Journal for Pediatric and Congenital Heart Surgery. 2024.
https://pubmed.ncbi.nlm.nih.gov/38780414/
Researchers are interested in using partial heart transplantation (i.e., only the part of the heart containing the necessary heart valve is transplanted) to deliver growing heart valve implants. This novel technique allows partial heart transplants to grow, similar to the valves in heart transplants. More work is needed, however, to understand the underlying biological mechanisms of this approach and achieve progress in clinical care. In the present study, the authors present a surgical protocol for partial heart transplantation in growing piglets. This model will enable other researchers to seek fundamental knowledge about the nature of partial heart transplants. Supported by ORIP (U42OD011140) and NHLBI.
Epigenetic MLH1 Silencing Concurs With Mismatch Repair Deficiency in Sporadic, Naturally Occurring Colorectal Cancer in Rhesus Macaques
Deycmar et al., Journal of Translational Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38504345
Rhesus macaques serve as a useful model for colorectal cancer (CRC) in humans, but more data are needed to understand the molecular pathogenesis of these cancers. Using male and female rhesus macaques, researchers investigated mismatch repair status, microsatellite instability, genetic mutations, transcriptional differences, and epigenetic alterations associated with CRC. Their data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. This work provides a uniquely informative model for human CRC. Supported by ORIP (P51OD011092, R24OD010947, R24OD021324, P40OD012217, U42OD010426, T35OD010946, T32OD010957), NCATS, and NCI.
GenomeMUSter Mouse Genetic Variation Service Enables Multitrait, Multipopulation Data Integration and Analysis
Ball et al., Genome Research. 2024.
https://genome.cshlp.org/content/34/1/145.long
Advances in genetics, including transcriptome-wide and phenome-wide association analysis methods, create compelling new opportunities for using fully reproducible and widely studied inbred mouse strains to characterize the polygenetic basis for individual differences in disease-related traits. Investigators developed an imputation approach and implemented data service to provide a broad and more comprehensive mouse variant resource. They evaluated the strain-specific imputation accuracy on a “held-out” test set that was not used in the imputation process. The authors present its application to multipopulation and multispecies analyses of complex trait variation in type 2 diabetes and substance use disorders and compare these results to human genetics studies. Supported by ORIP (U42OD010921, P40OD011102, R24OD035408), NCI, NIAAA, NIDA, and NIDCD.
Preclinical Safety and Biodistribution of CRISPR Targeting SIV in Non-Human Primates
Burdo et al., Gene Therapy. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11090835/
Nonhuman primates have served as a valuable resource for evaluating novel eradication and cure strategies for HIV infection. Using a male rhesus macaque model, researchers demonstrated the safety and utility of CRISPR gene-editing technology for targeting integrated simian immunodeficiency virus (SIV). Their work suggests that a single intravenous inoculation for HIV gene editing can be utilized to reach viral reservoirs throughout the body. Additionally, no off-target effects or abnormal pathology were observed. Together, these findings support the continued development of HIV eradicative cure strategies using CRISPR technology in humans. Supported by ORIP (P40OD012217, U42OD021458).
Host Genetic Variation Impacts SARS-CoV-2 Vaccination Response in the Diversity Outbred Mouse Population
Cruz Cisneros et al., Vaccines. 2024.
https://pubmed.ncbi.nlm.nih.gov/38276675/
The COVID-19 pandemic led to the rapid and worldwide development of highly effective vaccines against SARS-CoV-2. Although host genetic factors are known to affect vaccine efficacy for such respiratory pathogens as influenza and tuberculosis, the impact of host genetic variation on vaccine efficacy against COVID-19 is not well understood. Investigators used the diversity outbred mouse model to study the effects of genetic variation on vaccine efficiency. Data indicate that variations in vaccine response in mice are heritable, similar to that in human populations. Supported by ORIP (U42OD010924), NIAID, and NIGMS.