Selected Grantee Publications
Host Immunity Associated With Spontaneous Suppression of Viremia in Therapy-Naïve Young Rhesus Macaques Following Neonatal SHIV Infection
Evangelous et al., Journal of Virology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10688376/
Previously, investigators developed a pediatric rhesus macaque model for simian–human immunodeficiency virus infection that can be exploited to identify host immunity associated with viremia suppression. In the present study, they used the model (with male and female animals) to characterize humoral and cellular immunity and plasma biomarkers associated with spontaneous viremia suppression. They identified CD8-expressing cells and varied T-cell subsets that were associated with viremia suppression. Additionally, the authors observed intermediate monocytes with upregulation of inhibitory genes that previously had been reported only in cytotoxic cells. These findings suggest a complex immunologic milieu of viremia suppression in pediatric populations. Supported by ORIP (P51OD011092, U42OD010426) and NIAID.
The Impact of SIV-Induced Immunodeficiency on Clinical Manifestation, Immune Response, and Viral Dynamics in SARS-CoV-2 Coinfection
Melton et al., bioRxiv. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10680717/
The effects of immunodeficiency caused by chronic HIV infection on COVID-19 have not been directly addressed in a controlled setting. Investigators conducted a pilot study in which two pigtail macaques (PTMs) chronically infected with SIVmac239 were exposed to SARS-CoV-2 and compared with SIV-naive PTMs infected with SARS-CoV-2. Despite the marked decrease in CD4+ T cells in the SIV-positive animals prior to exposure to SARS-CoV-2, investigators found that disease progression, viral persistence, and evolution of SARS-CoV-2 were comparable to the control group. These findings suggest that SIV-induced immunodeficiency alters the immune response to SARS-CoV-2 infection, leading to impaired cellular and humoral immunity. However, this impairment does not significantly alter the course of infection. Supported by ORIP (P51OD011104, U42OD013117, S10OD026800, S10OD030347) and NIAID.
Timing of Initiation of Anti-Retroviral Therapy Predicts Post-Treatment Control of SIV Replication
Pinkevych et al., PLOS Pathogens. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558076/
Researchers are interested in approaches to reducing viral rebound following interruption of antiretroviral therapy, but more work is needed to understand major factors that determine the viral “setpoint” level. Researchers previously assessed how timing of treatment can affect the frequency of rebound from latency. In the current study, the authors analyzed data from multiple studies of simian immunodeficiency virus (SIV) infection in rhesus macaques to further explore the dynamics and predictors of post-treatment viral control. They determined that the timing of treatment initiation was a major predictor of both the level and the duration of post-rebound SIV control. These findings could help inform future treatments. Supported by ORIP (U42OD011023, P51OD011132, P51OD011092), NIAID, NCI, NIDA, NIDDK, NHLBI, NIMH, and NINDS
The Contribution of Maternal Oral, Vaginal, and Gut Microbiota to the Developing Offspring Gut
Russell et al., Scientific Reports. 2023.
https://www.nature.com/articles/s41598-023-40703-7#Ack1
The maturation process of the gut microbiota (GM) is an essential process for life-long health that is defined by the acquisition and colonization of microorganisms in the gut and the subsequent immune system induction that occurs during early life. To address significant knowledge gaps in this area, investigators characterized the neonatal fecal and ileal microbiota of entire litters of mice at multiple pre-weaning time-points. Results indicated that specific-pathogen-free mouse microbiotas undergo a dynamic and somewhat characteristic maturation process, culminating by roughly two to three weeks of age. Prior to that, the neonatal GM is more similar in composition to the maternal oral microbiota, as opposed to the vaginal and fecal microbiotas. Further studies are needed to expand our knowledge regarding the effect of these developmental exposures on host development. Supported by ORIP (U42OD010918, R03OD028259).
Focused Ultrasound–Mediated Brain Genome Editing
Lao et al., PNAS. 2023.
https://www.pnas.org/doi/epdf/10.1073/pnas.2302910120
Gene editing in the brain has been challenging because of the restricted transport imposed by the blood–brain barrier (BBB). In this study, investigators described a safe and effective gene‑editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR machinery to the brain in mice. By combining FUS with adeno-associated virus–mediated gene delivery, researchers can achieve more than 25% editing efficiency of particular cell types. This method has the potential to expand toolkit options for CRISPR delivery and opens opportunities for treating diseases of the brain, such as neurodegenerative disorders, with somatic genome editing. Supported by ORIP (U42OD026635) and NINDS.
Lymph-Node-Based CD3+ CD20+ Cells Emerge From Membrane Exchange Between T Follicular Helper Cells and B Cells and Increase Their Frequency Following Simian Immunodeficiency Virus Infection
Samer et al., Journal of Virology. 2023.
https://www.doi.org/10.1128/jvi.01760-22
CD4+ T follicular helper cells are known to persist during antiretroviral therapy (ART) and have been identified as key targets for viral replication and persistence. Researchers identified a lymphocyte population that expresses CD3 (i.e., T cell lineage marker) and CD20 (i.e., B cell lineage marker) on the cellular surface in lymphoid tissues from rhesus macaques of both sexes and humans of male and female sexes. In macaques, the cells increased following simian immunodeficiency virus infection, were reduced with ART, and increased in frequency after ART interruption. These cells represent a potential area for future therapeutic strategies. Supported by ORIP (P51OD011132, U42OD011023), NIAID, NCI, NIDDK, NIDA, NHLBI, and NINDS.
Efficient Ex Vivo Expansion of Conserved Element Vaccine-Specific CD8+ T Cells from SHIV-Infected, ART-Suppressed Nonhuman Primates
Dross et al., Frontiers in Immunology. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10189133/
HIV-specific T cells are necessary for control of HIV-1 replication but are largely insufficient for viral clearance. Using male rhesus macaques, investigators sought to increase the frequency of specific T cell responses in vivo using an ex vivo cell manufacturing approach. The resulting products contained high frequencies of specific, polyfunctional T cells, but no significant differences in T cell persistence were observed, nor was acquisition of simian–human immunodeficiency virus (SHIV). This work underscores this animal model as an important approach to optimize the manufacturing of antigen-specific immune effectors that can prevent virus acquisition and control viral rebound after discontinuing antiretroviral therapy (ART). Supported by ORIP (P51OD010425, U42OD011123), NIAID, and NCI.
Complement Contributes to Antibody-Mediated Protection Against Repeated SHIV Challenge
Goldberg et al., PNAS. 2023.
The first clinical efficacy trials of a broadly neutralizing antibody (bNAb) resulted in less benefit than expected and suggested that improvements are needed to prevent HIV infection. Using rhesus macaques of both sexes, investigators sought to further investigate the contribution of antibody-mediated activation of complement to the protective potency of an HIV bNAb in passive transfer and simian–human immunodeficiency virus (SHIV) challenge experiments. They observed that fewer bNAbs were required to protect animals from plasma viremia when complement activity was enhanced, suggesting that complement-mediated effector functions contribute to in vivo antiviral activity and might contribute to further improvements in the efficacy of antibody-mediated prevention strategies. Supported by ORIP (P51OD011092, U42OD023038) and NIAID.
Longitudinal Characterization of Circulating Extracellular Vesicles and Small RNA During Simian Immunodeficiency Virus Infection and Antiretroviral Therapy
Huang et al., AIDS. 2023.
https://www.doi.org/10.1097/QAD.0000000000003487
Antiretroviral therapy is effective for controlling HIV infection but does not fully prevent early aging disorders or serious non-AIDS events among people with HIV. Using pigtail and rhesus macaques (sex not specified), researchers profiled extracellular vesicle small RNAs during different phases of simian immunodeficiency virus infection to explore the potential relationship between extracellular vesicle–associated small RNAs and the infection process. They reported that average particle counts correlated with infection, but the trend could not be explained fully by virions. These findings raise new questions about the distribution of extracellular vesicle RNAs in HIV latent infection. Supported by ORIP (U42OD013117), NIDA, NIMH, NIAID, NCI, and NINDS.
Mechanism of STMN2 Cryptic Splice-Polyadenylation and its Correction for TDP-43 Proteinopathies
Baughn et al., Science. 2023.
Loss of the RNA-binding protein TDP-43 from the nuclei of affected neurons is a hallmark of neurodegeneration in TDP-43 proteinopathies (e.g., amyotrophic lateral sclerosis, frontotemporal dementia). Loss of functional TDP-43 is accompanied by misprocessing of the stathmin-2 (STMN2) RNA precursor. Investigators determined the elements through which TDP‑43 regulates STMN2 pre‑mRNA processing and identified steric binding antisense oligonucleotides that are capable of restoring normal STMN2 protein and RNA levels. This approach is potentially applicable for human therapy. Supported by ORIP (U42OD010921), NIA, NCI, NIGMS, and NINDS.