Selected Grantee Publications
Transfer Efficiency and Impact on Disease Phenotype of Differing Methods of Gut Microbiota Transfer
Zhang et al., Scientific Reports. 2022.
https://www.doi.org/10.1038/s41598-022-24014-x
To test causal relationships between complex gut microbiota (GM) and host outcomes, researchers frequently transfer GM between donor and recipient mice via embryo transfer (ET) rederivation, cross-fostering (CF), and co‑housing. In this study, the investigators assessed the influence of transfer method and differences in baseline donor and recipient microbiota richness on transfer efficiency in mice of both sexes. Their results demonstrate that both transfer method and transfer direction influence experimental GM transfer efficiency. ET showed the highest transfer efficiency, whereas the CF method—with the advantage of lower cost and complexity compared to ET—provided a possible viable alternative option for GM transfer studies where high efficiency is desired. Supported by ORIP (U42OD010918).
Effect of Single Housing on Innate Immune Activation in Immunodeficiency Virus–Infected Pigtail Macaques (Macaca nemestrina) as a Model of Psychosocial Stress in Acute HIV Infection
Castell et al., Psychosomatic Medicine. 2022.
https://www.doi.org/10.1097/PSY.0000000000001132
Psychosocial stress is associated with immune system dysregulation and worsened clinical outcomes in people with HIV. Investigators performed a retrospective analysis of acute simian immunodeficiency virus (SIV) infection of male pigtail macaques to compare the innate immune responses of social and single housing. The singly housed macaques showed reduced expansion of classical and intermediate monocytes, prolonged thrombocytopenia, and suppression of platelet activation during the first 2 weeks after inoculation. These findings indicate that psychosocial stress might induce clinically significant immunomodulatory effects in the innate immune system during acute SIV infection. Supported by ORIP (P40OD013117, K01OD018244, T32OD011089, U42OD013117), NIAID, NIMH, and NINDS.
System-Wide Identification of Myeloid Markers of TB Disease and HIV-Induced Reactivation in the Macaque Model of Mtb Infection and Mtb/SIV Co-Infection
Gough et al., Frontiers in Immunology. 2022.
https://www.doi.org/10.3389/fimmu.2022.777733
HIV is known to catalyze the reactivation of latent tuberculosis (TB) infection. The investigators characterized Mycobacterium tuberculosis (Mtb) and simian immunodeficiency virus (SIV) coinfection using a rhesus macaque model of both sexes, with a focus on pathways relevant to myeloid origin cells (e.g., macrophages). They identified gene signatures of host disease state and progression, as well as clustering algorithms for differentiation between host disease states and relationships among genes. The gene signatures were associated with pathways relevant to apoptosis, adenosine triphosphate production, phagocytosis, cell migration, and type I interferon, which are related to macrophage function. Collectively, these findings suggest that novel macrophage functions influence Mtb infection both with and without SIV coinfection. Supported by ORIP (P51OD011104, P51OD011103, U42OD010442) and NIAID.
Mendelian Gene Identification through Mouse Embryo Viability Screening
Cacheiro et al., Genome Medicine. 2022.
https://www.doi.org/10.1186/s13073-022-01118-7
The investigators dissected phenotypic similarities between patients and model organisms by assessing the embryonic stage at which homozygous loss of function results in lethality in mice of both sexes obtained from the International Mouse Phenotyping Consortium. Information on knockout mouse embryo lethality can be used to prioritize candidate genes associated with certain disorders. Access to unsolved cases from rare-disease genome sequencing programs allows for the screening of those genes for potentially pathogenic variants, which could lead to a diagnosis and new potential treatment options to inform the management of human disease. Supported by ORIP (UM1OD023221, UM1OD023222, U42OD011174) and NHGRI.
Distinct Sensitivities to SARS-CoV-2 Variants in Vaccinated Humans and Mice
Walls et al., Cell Reports. 2022.
https://www.doi.org/10.1016/j.celrep.2022.111299
Emergence of SARS-CoV-2 variants necessitates real-time evaluation of their impact on serum neutralizing activity, as a proxy for vaccine efficacy, to inform public health policies and guide vaccine development. The investigators report that vaccinated female BALB/c mice do not recapitulate faithfully the breadth and potency of neutralizing antibody responses toward the SARS-CoV-2 Beta and Gamma variants of concern, compared with humans of both sexes and male nonhuman primates (i.e., rhesus and pigtail macaques). This finding was consistent across several vaccine modalities, doses, antigens, and assays, suggesting caution should be exercised when interpreting serum neutralizing data obtained from mice. Supported by ORIP (P51OD010425, U42OD011123) and NIAID.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
Lesion Environments Direct Transplanted Neural Progenitors Towards a Wound Repair Astroglial Phenotype in Mice
O’Shea et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33382-x
Neural progenitor cells (NPCs) are potential cell transplantation therapies for central nervous system (CNS) injuries. Investigators derived NPCs expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling. Their findings reveal similarities between the transcriptional profiles, cellular morphologies, and functional features of cells transplanted into subacute CNS lesions and host astroglia. The astroglia are stimulated by injuries to proliferate and adopt a naturally occurring, border-forming wound repair phenotype in mice of both sexes. Understanding the autonomous cues instructing NPCs transplanted in CNS host tissue will be fundamental to therapeutic NPC transplantation. Supported by ORIP (U42OD010921,U42OD011174, UM1OD023222) and NINDS.
Profiling Development of Abdominal Organs in the Pig
Gabriel et al., Scientific Reports. 2022.
https://www.doi.org/10.1038/s41598-022-19960-5
The pig is a model system for studying human development and disease due to its similarities to human anatomy, physiology, size, and genome. Moreover, advances in CRISPR gene editing have made genetically engineered pigs a viable model for the study of human pathologies and congenital anomalies. However, a detailed atlas illustrating pig development is necessary for identifying and modeling developmental defects. Here, the authors describe normal development of the pig abdominal system (i.e., kidney, liver, pancreas, spleen, adrenal glands, bowel, gonads) and compare them with congenital defects that can arise in gene-edited SAP130 mutant pigs. This atlas and the methods described here can be used as tools for identifying developmental pathologies of the abdominal organs in the pig at different stages of development. Supported by ORIP (U42OD011140), NHLBI, NIAID, NIBIB, NICHD, and NINDS.
Mosaic RBD Nanoparticles Protect Against Challenge by Diverse Sarbecoviruses in Animal Models
Cohen et al., Science. 2022.
https://www.doi.org/10.1126/science.abq0839
Two animal coronaviruses from the SARS-like betacoronavirus (sarbecovirus) lineage—SARS-CoV and SARS-CoV-2—have caused epidemics or pandemics in humans during the past 20 years. New SARS-CoV-2 variants have prolonged the COVID-19 pandemic, and the discovery of diverse sarbecoviruses in bats raises the possibility of another coronavirus pandemic. Vaccines and therapeutics are needed to protect against both SARS-CoV-2 variants and zoonotic sarbecoviruses with the potential to infect humans. The authors designed mosaic-8 nanoparticles (SARS-CoV-2 and seven animal sarbecoviruses) that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. Their results of immune responses elicited by mosaic-8 RBD nanoparticles in mice and macaques suggest that mosaic nanoparticles could protect against both SARS-CoV-2 variants and zoonotic sarbecoviruses with the potential to infect humans. Supported by ORIP (P40OD012217, U42OD021458, S10OD028685) and NIAID.
A Novel DPH5-Related Diphthamide-Deficiency Syndrome Causing Embryonic Lethality or Profound Neurodevelopmental Disorder
Shankar et al., Genetics in Medicine. 2022.
https://www.doi.org/10.1016/j.gim.2022.03.014
Neurodevelopmental disorders (NDDs) affect more than 3% of the pediatric population and often have associated neurologic or multisystem involvement. The underlying genetic etiology of NDDs remains unknown in many individuals. Investigators characterized the molecular basis of NDDs in children of both sexes with nonverbal NDDs from three unrelated families with distinct overlapping craniofacial features. The investigators also used a mouse model of both sexes to determine the pathogenicity of variants of uncertain significance, as well as genes of uncertain significance, to advance translational genomics and provide precision health care. They identified several variants in DPH5 as a potential cause of profound NDD. Their findings provide strong clinical, biochemical, and functional evidence for DPH5 variants as a novel cause of embryonic lethality or profound NDD with multisystem involvement. Based on these findings, the authors propose that “DPH5-related diphthamide deficiency syndrome” is a novel autosomal-recessive Mendelian disorder. Supported by ORIP (K01OD026608, U42OD012210) and NHGRI.