Selected Grantee Publications
Systematic Ocular Phenotyping of 8,707 Knockout Mouse Lines Identifies Genes Associated With Abnormal Corneal Phenotypes
Vo et al., BMC Genomics. 2025.
https://pubmed.ncbi.nlm.nih.gov/39833678
Corneal dysmorphologies (CDs) are a group of acquired but predominantly genetically inherited eye disorders that cause progressive vision loss and can be associated with systemic abnormalities. This study aimed to identify candidate CD genes in humans by looking at knockout mice with targeted deletions of orthologous genes that exhibited statistically significant corneal abnormalities. Analysis of data from 8,707 knockout mouse lines identified 213 candidate CD genes; 176 (83%) genes have not been implicated previously in CD. Bioinformatic analyses implicated candidate genes in several signaling pathways (e.g., integrin signaling pathway, cytoskeletal regulation by Rho GTPase, FAS signaling pathway), which are potential therapeutic targets. Supported by ORIP (U42OD011175, R03OD032622, UM1OD023221), NEI, and NHGRI.
In Vivo Expansion of Gene-Targeted Hepatocytes Through Transient Inhibition of an Essential Gene
De Giorgi et al., Science Translational Medicine. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937884
This study explores Repair Drive, a platform technology that selectively expands homology-directed repair for treating liver diseases in male and female mice. Through transient conditioning of the liver by knocking down an essential gene—fumarylacetoacetate hydrolase—and delivering an untraceable version of that essential gene with a therapeutic transgene, Repair Drive significantly increases the percentage of gene-targeted hepatocytes (liver cells) up to 25% without inducing toxicity or tumorigenesis after a 1-year follow-up. This also resulted in a fivefold increase in expression of human factor IX, a therapeutic transgene. Repair Drive offers a promising platform for precise, safe, and durable correction of liver-related genetic disorders and may expand the applicability of somatic cell genome editing in a broad range of liver diseases in humans. Supported by ORIP (U42OD035581, U42OD026645), NCI, NHLBI, and NIDDK.