Selected Grantee Publications
The Role of ATP Citrate Lyase in Myelin Formation and Maintenance
Schneider et al., Glia. 2024.
https://pubmed.ncbi.nlm.nih.gov/39318247/
Myelin formation by Schwann cells is critical for peripheral nervous system development and long-term neuronal function. The study examined how acetyl coenzyme A (acetyl-CoA), essential for lipid synthesis in myelin, is derived, with a focus on mitochondrial ATP citrate lysate (ACLY). By using both sexes in a Schwann cell–specific ACLY knockout mouse model, the authors reported that ACLY plays a role in acetyl-CoA supply for myelin maintenance but not myelin formation. ACLY is necessary for sustaining myelin gene expression and preventing nerve injury pathways. This work highlights a unique dependency on mitochondrial acetyl-CoA for Schwann cell integrity, providing insights into lipid metabolism in neuronal repair. Supported by ORIP (T35OD011078), NICHD, and NINDS.
Acquired Dysfunction of CFTR Underlies Cystic Fibrosis-Like Disease of the Canine Gallbladder
Gookin et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39041675/
Mucocele formation in dogs is pathologically similar to cystic fibrosis. In this study, researchers investigated the role of cystic fibrosis transmembrane conductance regulator (CFTR) in the pathogenesis of the disease. They determined the location and frequency of disease-associated variants in the coding region of CFTR using whole-genome sequence data from 2,642 dogs representing breeds at low risk, high risk, or with confirmed disease. The authors’ findings establish significant loss of CFTR-dependent anion secretion by mucocele gallbladder mucosa. There were no significant differences in CFTR gene variant frequency, type, or predicted impact comparing low-risk, high-risk, and definitively diagnosed groups of dogs. Their results suggest a disease of the canine gallbladder that is similar to cystic fibrosis and is driven by CFTR dysfunction. Supported by ORIP (T35OD011070, K01OD027058).
Transcriptome- and Proteome-Wide Effects of a Circular RNA Encompassing Four Early Exons of the Spinal Muscular Atrophy Genes
Luo, Scientific Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/38714739/
Spinal muscular atrophy (SMA) is a leading genetic cause of mortality in infants and often results from a deficiency of deletions of or mutations in the SMN1 gene. In this study, researchers report the transcriptome- and proteome-wide effects of overexpression of C2A‑2B3-4, a circular RNA produced by SMN1 and SMN2, in cells. They report that C2A-2B-3-4 is associated with expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation, and neuromuscular junction formation. More work is needed to investigate the role of these genes in processes associated with SMA and other pathological conditions, including cancer and male infertility. Supported by ORIP (T35OD027967) and NINDS.
Epigenetic MLH1 Silencing Concurs With Mismatch Repair Deficiency in Sporadic, Naturally Occurring Colorectal Cancer in Rhesus Macaques
Deycmar et al., Journal of Translational Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38504345
Rhesus macaques serve as a useful model for colorectal cancer (CRC) in humans, but more data are needed to understand the molecular pathogenesis of these cancers. Using male and female rhesus macaques, researchers investigated mismatch repair status, microsatellite instability, genetic mutations, transcriptional differences, and epigenetic alterations associated with CRC. Their data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. This work provides a uniquely informative model for human CRC. Supported by ORIP (P51OD011092, R24OD010947, R24OD021324, P40OD012217, U42OD010426, T35OD010946, T32OD010957), NCATS, and NCI.
Diverse Targets of SMN2-Directed Splicing-Modulating Small Molecule Therapeutics for Spinal Muscular Atrophy
Ottesen et al., Nucleic Acids Research. 2023.
https://academic.oup.com/nar/article/51/12/5948/7110763?login=true
Spinal muscular atrophy (SMA) results from deletions or mutations of the SMN1 gene. SMN2 is a nearly identical copy of SMN1 but cannot compensate for its loss. Manipulation of splicing to restore SMN2 exon 7 inclusion provides a promising therapeutic avenue for SMA, and two small-molecule agents—risdiplam and branaplam—restore body-wide inclusion of the SMN2 exon 7 upon oral administration. In this study, researchers demonstrate the advantages of combined treatments with low doses of risdiplam and branaplam. These findings can be applied to develop the next generation of small‑molecule therapeutics, with a focus on better efficacies and fewer off-target effects. Supported by ORIP (T35OD027967) and NINDS.