Selected Grantee Publications
Stat3 Mediates Fyn Kinase-Driven Dopaminergic Neurodegeneration and Microglia Activation
Siddiqui et al., Disease Models & Mechanisms. 2024.
https://pubmed.ncbi.nlm.nih.gov/39641161
The FYN gene is a risk locus for Alzheimer’s disease and several other neurodegenerative disorders. FYN encodes Fyn kinase, and previous studies have shown that Fyn signaling in dopaminergic neurons and microglia plays a role during neurodegeneration. This study investigated Fyn signaling using zebrafish that express a constitutively active Fyn Y531F mutant in neural cells. Activated neural Fyn signaling in the mutant animals resulted in dopaminergic neuron loss and induced inflammatory cytokine expression when compared with controls. Transcriptomic and chemical inhibition analyses revealed that Fyn-driven changes were dependent on the Stat3 and NF-κB signaling pathways, which work synergistically to activate neuronal inflammation and degeneration. This study provides insight into the mechanisms underlying neurodegeneration, identifying Stat3 as a novel effector of Fyn signaling and a potential translational target. Supported by ORIP (R24OD020166).
Proof-of-Concept Studies With a Computationally Designed Mpro Inhibitor as a Synergistic Combination Regimen Alternative to Paxlovid
Papini et al., PNAS. 2024.
As the spread and evolution of SARS-CoV-2 continues, it is important to continue to not only work to prevent transmission but to develop improved antiviral treatments as well. The SARS-CoV-2 main protease (Mpro) has been established as a prominent druggable target. In the current study, investigators evaluate Mpro61 as a lead compound, utilizing structural studies, in vitro pharmacological profiling to examine possible off-target effects and toxicity, cellular studies, and testing in a male and female mouse model for SARS-CoV-2 infection. Results indicate favorable pharmacological properties, efficacy, and drug synergy, as well as complete recovery from subsequent challenge by SARS-CoV-2, establishing Mpro61 as a promising potential preclinical candidate. Supported by ORIP (R24OD026440, S10OD021527), NIAID, and NIGMS.
Epigenetic MLH1 Silencing Concurs With Mismatch Repair Deficiency in Sporadic, Naturally Occurring Colorectal Cancer in Rhesus Macaques
Deycmar et al., Journal of Translational Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38504345
Rhesus macaques serve as a useful model for colorectal cancer (CRC) in humans, but more data are needed to understand the molecular pathogenesis of these cancers. Using male and female rhesus macaques, researchers investigated mismatch repair status, microsatellite instability, genetic mutations, transcriptional differences, and epigenetic alterations associated with CRC. Their data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. This work provides a uniquely informative model for human CRC. Supported by ORIP (P51OD011092, R24OD010947, R24OD021324, P40OD012217, U42OD010426, T35OD010946, T32OD010957), NCATS, and NCI.