Selected Grantee Publications
Proinflammatory Cytokines Suppress Stemness-Related Properties and Expression of Tight Junction in Canine Intestinal Organoids
Nakazawa et al., In Vitro Cellular & Developmental Biology—Animal. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11419940
Cells in the gastrointestinal tract are exposed to numerous stressors that can promote excessive inflammation, including environmental chemicals and dietary substances. Researchers studied how canine intestinal epithelial cell (IEC)–derived organoids responded to exposure to one of three proinflammatory cytokines; interferon-γ (IFN-γ), tumor necrosis factor-α (TNFα), or interleukin-1β (IL1β). Exposure to IFN-γ resulted in downregulation of the stem cell marker Lgr5. Only IFN-γ exposure resulted in increased production of caspase 3 and caspase 8. Exposure to either IFN-γ or IL1β resulted in suppressed cell proliferation. The pro-inflammatory cytokines caused reduced tight junction protein expression and compromised membrane integrity. These findings are important to understanding IEC response to different inflammatory stimuli and to broadening knowledge of gut physiology. Supported by ORIP (K01OD030515, R21OD031903).
Fetal Bone Engraftment Reconstitutes the Immune System in Pigs With Severe Combined Immunodeficiency
Monarch et al., Lab Animal. 2024.
https://pubmed.ncbi.nlm.nih.gov/39289566/
A valuable preclinical model for studying immune-related pathologies is the severe combined immunodeficiency (SCID) pig through modification of recombination activating gene 2 (RAG2) and interleukin-2 receptor-γ (IL2RG). RAG2/IL2RG double knockout SCID pigs are hard to maintain for breeding and long-term studies because their life span is 8 weeks or less. The researchers investigated fetal allograft transplantation derived from immunocompetent pigs as a strategy for reconstituting the immune system of SCID pigs and promoting survival. Following fetal allograft, SCID pigs demonstrated increased levels of lymphocytes. SCID pigs that received the fetal allograft demonstrated improved body condition and extended life span compared with nonrecipient SCID littermates. This study demonstrates the potential use of fetal allograft transplantation to extend the life span of SCID pigs to breeding age to reduce the resources used to maintain this model for biomedical research. Supported by ORIP (U42OD011140, R21OD027062).
Intrinsic Link Between PGRN and GBA1 D409V Mutation Dosage in Potentiating Gaucher Disease
Lin et al., Human Molecular Genetics. 2024.
https://doi.org/10.1093/hmg/ddae113
Gaucher disease (GD) is an autosomal recessive disorder and one of the most common lysosomal storage diseases. GD is caused by mutations in the GBA1 gene that encodes glucocerebrosidase (GCase), a lysosomal protein involved in glyocolipid metabolism. Progranulin (PGRN, encoded by GRN) is a modifier of GCase, and GRN mutant mice exhibit a GD-like phenotype. The researchers in this study aimed to understand the relationship between GCase and PGRN. They generated a panel of mice with various doses of the GBA1 D409V mutation in the GRN-/- background and characterized the animals’ disease progression using biochemical, pathological, transcriptomic, and neurobehavioral analyses. Homozygous (GRN-/-, GBA1 D409V/D409V) and hemizygous (GRN-/-, GBA1 D409V/null) animals exhibited profound inflammation and neurodegeneration compared to PG96 wild-type mice. Compared to homozygous mice, hemizygous mice showed more profound phenotypes (e.g., earlier onset, increased tissue fibrosis, shorter life span). These findings offer insights into GD pathogenesis and indicate that GD severity is affected by GBA1 D409V dosage and the presence of PGRN. Supported by ORIP (R21OD033660) and NINDS.
PGRN Deficiency Exacerbates, Whereas a Brain Penetrant PGRN Derivative Protects, GBA1 Mutation–Associated Pathologies and Diseases
Zhao et al., Proc Natl Acad Sci USA. 2023.
https://www.pnas.org/doi/10.1073/pnas.2210442120
Mutations in GBA1 are associated with Gaucher disease (GD) and are also genetic risks in developing Parkinson’s disease (PD). Investigators created a mouse model and demonstrated that progranulin (PGRN) deficiency in Gba1 mutant mice caused early onset and exacerbated GD phenotypes, leading to substantial increases in substrate accumulation and inflammation in visceral organs and the central nervous system. These in vivo and ex vivo data demonstrated that PGRN plays a crucial role in the initiation and progression. In addition, the mouse model provides a clinically relevant system for testing therapeutic approaches for GD and PD. Supported by ORIP (R21OD033660), NIAMS, and NINDS.
X Chromosome Agents of Sexual Differentiation
Arnold et al., Nature Reviews Endocrinology. 2022.
https://www.doi.org/10.1038/s41574-022-00697-0
Many diseases affect one sex disproportionately. A major goal of biomedical research is to understand which sex-biasing factors influence disease severity and to develop therapeutic strategies to target these factors. Two groups of such agents are sex chromosome genes and gonadal hormones. Researchers use the “four core genotypes” model to enable comparisons among animals with different sex chromosomes but the same type of sex hormones, which allows investigators to distinguish disease mechanisms influenced by the sex chromosomes. Supported by ORIP (R01OD030496, R21OD026560), NICHD, NIDDK, and NHLBI.
Multiplexed Drug-Based Selection and Counterselection Genetic Manipulations in Drosophila
Matinyan et al., Cell Reports. 2021.
https://www.cell.com/cell-reports/pdf/S2211-1247(21)01147-5.pdf
Many highly efficient methods exist which enable transgenic flies to contribute to diagnostics and therapeutics for human diseases. In this study, researchers describe a drug-based genetic platform with four selection and two counterselection markers, increasing transgenic efficiency by more than 10-fold compared to established methods in flies. Researchers also developed a plasmid library to adapt this technology to other model organisms. This highly efficient transgenic approach significantly increases the power of not only Drosophila melanogaster but many other model organisms for biomedical research. Supported by ORIP (P40OD018537, P40OD010949, R21OD022981), NCI, NHGRI, NIGMS, and NIMH.
Establishing an Immunocompromised Porcine Model of Human Cancer for Novel Therapy Development with Pancreatic Adenocarcinoma and Irreversible Electroporation
Hendricks-Wenger et al., Scientific Reports. 2021.
https://pubmed.ncbi.nlm.nih.gov/33828203/
Efficacious interventions to treat pancreatic cancer lack a preclinical model to recapitulate patients' anatomy and physiology. The authors developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. These pigs were successfully generated using on-demand genetic modifications in embryos. Human Panc01 cells injected into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. This model will be useful to bridge the gap of translating therapies from the bench to clinical application. Supported by ORIP (R21OD027062), NIBIB, and NCI.
Lung Expression of Human Angiotensin-Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection
Han et al., American Journal of Respiratory Cell and Molecular Biology. 2021.
https://doi.org/10.1165/rcmb.2020-0354OC
A rapidly deployable mouse model that recapitulates a disease caused by a novel pathogen would be a valuable research tool during a pandemic. Researchers were able to produce C57BL/6J mice with lung expression of human angiotensin-converting enzyme 2 (hACE2), the receptor for SARS-CoV-2. They did so by oropharyngeal delivery of a recombinant human adenovirus type 5 expressing hACE2. The transduced mice were then infected with SARS-CoV-2. Thereafter, the mice developed interstitial pneumonia with perivascular inflammation, exhibited higher viral load in lungs compared to controls, and displayed a gene expression phenotype resembling the clinical response in lungs of humans with COVID-19. Supported by ORIP (P51OD011104, R21OD024931), NHLBI, and NIGMS.