Selected Grantee Publications
Cytomegaloviral Determinants of CD8+ T Cell Programming and RhCMV/SIV Vaccine Efficacy
Malouli et al., Science Immunology. 2021.
https://www.science.org/doi/10.1126/sciimmunol.abg5413
Cytomegalovirus (CMV)-based vaccine vectors were developed to leverage the ability of CMVs to elicit sustained CD4+ and CD8+ T cell responses with broad tissue distribution. The 68-1 rhesus cytomegalovirus (RhCMV) vectors that express simian immunodeficiency virus (SIV) inserts induce major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+T cell responses. The contribution of this unconventional MHC restriction to RhCMV/SIV vaccine efficacy are poorly understood. Researchers demonstrated that these responses result from genetic rearrangements in 68-1 RhCMV that disrupt the function of eight immunomodulatory proteins encoded by the virus. Repair of each of these genes with either RhCMV or human CMV counterparts shifted responses to MHC-Ia-restricted, or MHC-Ia- and MHC-II-restricted, CD8 T cell responses, but repairing the RhCMV genes did not protect against SIV. These findings suggest that MHC-E-restricted CD8+ T cell responses may be critical to protection against SIV. Supported by ORIP (U42OD023038, P51OD011092).
Metabolomics Analysis of Follicular Fluid Coupled With Oocyte Aspiration Reveals Importance of Glucocorticoids in Primate Periovulatory Follicle Competency
Ravisankar et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-85704-6
Assisted reproductive therapy in primates requires ovarian stimulation protocols, which result in multiple heterogeneous oocytes with variable capacity for fertilization, cleavage, and blastocyst formation. Recovered oocytes from rhesus macaque follicles (n=74 follicles) were fertilized in vitro and classified as failed to cleave, cleaved but arrested, or able to form blastocysts. Metabolomics analysis of the follicular fluid identified 60 metabolites that were different among embryo classifications; key was an increase in the intrafollicular ratio of cortisol to cortisone in the blastocyst group, which was associated with translocation of the glucocorticoid receptor, NR3C1. The data suggest a role for NR3C1 in the regulation of follicular processes, such as expansion of cumulus granulosa cells, via paracrine signaling. Supported by ORIP (P51OD011092) and NICHD.
A Novel Tau-Based Rhesus Monkey Model of Alzheimer’s Pathogenesis
Beckman et al., Alzheimer’s & Dementia. 2021.
https://pubmed.ncbi.nlm.nih.gov/33734581/
Alzheimer’s disease (AD) is becoming more prevalent as the population ages, but there are no effective treatments for this devastating condition. Researchers developed a rhesus monkey model of AD by targeting the entorhinal cortex with an adeno-associated virus expressing mutant tau protein. Within 3 months they observed evidence of misfolded tau propagation, similar to what is hypothesized for AD patients. Treated monkeys developed robust alterations in AD core biomarkers in cerebrospinal fluid and blood. These results highlight the initial stages of tau seeding and propagation in rhesus macaques, a potentially powerful translational model with which to test new AD therapies. Supported by ORIP (P51OD011107) and NIA.
Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies Against the SHIV Challenge Virus but Not with V1V2 Vaccine–Induced Anti-V2 Antibodies Alone
Hessell et al., Journal of Immunology. 2021.
https://doi.org/10.4049/jimmunol.2001010
In the RV144 human immunodeficiency virus (HIV) vaccine trial, the only immune response associated with reduced infection was a high level of antibodies (Abs) targeting the second variable (V2) loop of the HIV envelope protein (Env). The mechanism underlying this suggested contribution of V2 Abs to protection remains unknown. Researchers tested the role of vaccine-induced anti-V2 Abs in rhesus macaques. Three vaccines strategies were designed to induce only V1V2 Abs before simian-human immunodeficiency virus (SHIV) challenge. Vaccine-induced V2 Abs did not independently control SHIV infection. However, neutralizing and virus capture anti-Env Abs were found to correlate with SHIV control. Supported by ORIP (P51OD011092) and NIAID.
Autologous Transplant Therapy Alleviates Motor and Depressive Behaviors in Parkinsonian Monkeys
Tao et al., Nature Medicine. 2021.
https://www.nature.com/articles/s41591-021-01257-1
Generation of induced pluripotent stem cells (iPSCs) enables standardized of dopamine (DA) neurons for autologous transplantation therapy to improve motor functions in Parkinson disease (PD). Adult male rhesus PD monkeys receiving autologous, but not allogenic, transplantation exhibited recovery from motor and depressive signs of PD over a 2-year period without immunosuppressive therapy. Mathematical modeling showed correlations between surviving DA neurons with PET signal intensity and behavior recovery regardless of autologous or allogeneic transplant, suggesting a predictive power of PET and motor behaviors for surviving DA neuron number. The results demonstrate favorable efficacy of the autologous transplant approach to treat PD. Supported by ORIP (P51OD011106) NINDS, and NICHD.
Immune Variations Throughout the Course of Tuberculosis Treatment and its Relationship with Adrenal Hormone Changes in HIV-1 Patients Co-Infected with Mycobacterium tuberculosis
Vecchione et al., Tuberculosis. 2021.
https://doi.org/10.1016/j.tube.2020.102045
The probability of developing tuberculosis (TB) is 19 times higher in people infected with human immunodeficiency virus (HIV) compared to the general population. As host immune response defines the course of infection, researchers aimed to identify immuno-endocrine changes over six months of anti-TB chemotherapy in HIV+ people. Throughout the course of anti-TB/HIV treatment, plasma dehydroepiandrosterone (DHEA) and DHEA-sulfate levels increased while cortisol decreased. The balance between cortisol and DHEA, together with clinical assessment, served as a predictor of clinical outcome after anti-TB treatment. This research suggests that combined anti-HIV/TB therapies may partially restore both immune function and adrenal hormone levels. Supported by ORIP (P51OD011133).
Polyfunctional Tier 2–Neutralizing Antibodies Cloned Following HIV-1 Env Macaque Immunization Mirror Native Antibodies in a Human Donor
Spencer et al., Journal of Immunology. 2021.
https://doi.org/10.4049/jimmunol.2001082
HIV vaccine efforts are limited by viral strain diversity and the shielding of neutralization epitopes on the viral envelope, yet isolation of broadly neutralizing antibodies from infected individuals suggests the potential for eliciting protective antibodies through vaccination. Researchers cloned 58 monoclonal antibodies (mAbs) from a rhesus monkey immunized with envelope glycoprotein immunogens from an HIV-1 clade C–infected volunteer. Twenty mAbs exhibited some neutralizing activity. Cloned mAbs targeting the V3 region and CD4 binding site were capable of tier 2 (i.e., moderate) neutralization. This study demonstrates partial recapitulation of the human donor’s humoral immune response through nonhuman primate vaccination. Supported by ORIP (P51OD011092) and NIAID.
Modified Adenovirus Prime–Protein Boost Clade C HIV Vaccine Strategy Results in Reduced Viral DNA in Blood and Tissues Following Tier 2 SHIV Challenge
Malherbe et al., Frontiers in Immunology. 2021.
https://doi.org/10.3389/fimmu.2020.626464
Researchers conducted a comparative vaccine challenge study in rhesus macaques. One group of monkeys was vaccinated using co-immunization with DNA Gag and Env expression plasmids and trimeric Env gp140 glycoprotein. The other group was primed with two replicating simian adenovirus-vectored vaccines expressing Gag and boosted with trimeric Env gp140. Both strategies elicited antigen-specific humoral and cellular immune responses, but neither approach provided significant protection from viral acquisition upon repeated mucosal challenges with a heterologous Tier 2 SHIV. Nevertheless, both regimens significantly lowered cell-associated viral DNA in multiple tissues, thus potentially dampening the infection and providing clues for further vaccine development. Supported by ORIP (U42OD023038, P51OD011092) and NIAID.
Evaluating a New Class of AKT/mTOR Activators for HIV Latency-Reversing Activity Ex Vivo and In Vivo
Gramatica et al., Journal of Virology. 2021.
https://doi.org/10.1128/JVI.02393-20
Activation of latent HIV-1 expression could benefit many HIV cure strategies. Researchers evaluated two AKT/mTOR activators, SB-216763 and tideglusib, as a potential new class of LRAs. The drugs reactivated latent HIV-1 present in blood samples from aviremic individuals on antiretroviral therapy without causing T cell activation or impaired effector function of cytotoxic T lymphocytes or NK cells. When tested in vivo in monkeys, tideglusib showed unfavorable pharmacodynamic properties and did not reverse SIV latency. The discordance between the ex vivo and in vivo results underscores the importance of developing novel LRAs that allow systemic drug delivery to relevant anatomical compartments. Supported by ORIP (P51OD011092), NIAID, NIGMS, NIMH, and NCI.
BNT162b Vaccines Protect Rhesus Macaques from SARS-CoV-2
Vogel et al., Nature. 2021.
https://www.nature.com/articles/s41586-021-03275-y
The preclinical development of two BNT162b vaccine candidates, which contain lipid-nanoparticle formulated nucleoside-modified mRNA encoding SARS-CoV-2 spike glycoprotein-derived immunogens, was performed in rhesus macaques at the Southwest National Primate Research Center (SNPRC). BNT162b1 encodes a soluble, secreted, trimerised receptor-binding domain. BNT162b2 encodes the full-length transmembrane spike glycoprotein, locked in its prefusion conformation. Prime/boost vaccination of rhesus macaques with BNT162b candidates elicits SARS-CoV-2 neutralizing antibody titers that are 8.2 to 18.2 times that of a SARS-CoV-2 convalescent human serum panel. The vaccine candidates protected macaques from SARS-CoV-2 challenge, with BNT162b2 protecting the lower respiratory tract from the presence of viral RNA and with no evidence of disease enhancement. The BNT162b2 vaccine recently received emergency use authorization from FDA and is being administered within the United States. The SNPRC is supported by ORIP (P51OD011103).