Selected Grantee Publications
Establishing the Hybrid Rat Diversity Program: A Resource for Dissecting Complex Traits
Dwinell et al., Mammalian Genome. 2025.
https://pubmed.ncbi.nlm.nih.gov/39907792
Rat models have been extensively used for studying human complex disease mechanisms, behavioral phenotypes, and environmental factors and for discovering and developing drugs. Systems genetics approaches have been used to study the effects of both genetic variation and environmental factors. This approach recognizes the complexity of common disorders and uses intermediate phenotypes to find relationships between genetic variation and clinical traits. This article describes the Hybrid Rat Diversity Program (HDRP) at the Medical College of Wisconsin, which involves 96 inbred rat strains and aims to provide a renewable and reusable resource in terms of the HRDP panel of inbred rat strains, the genomic data derived from the HRDP strains, and banked resources available for additional studies. Supported by ORIP (R24OD024617) and NHLBI.
Liver-Specific Transgenic Expression of Human NTCP In Rhesus Macaques Confers HBV Susceptibility on Primary Hepatocytes
Rust et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39937851
This study establishes the first transgenic nonhuman primate model for hepatitis B virus (HBV). Male and female rhesus macaques were engineered to express the human HBV receptor, NTCP (hNTCP), specifically in the liver. Researchers used PiggyBac transposon technology to introduce a liver-specific NTCP transgene into embryos, which were then implanted into surrogate females. The resulting offspring expressed hNTCP in hepatocytes and demonstrated high susceptibility to HBV infection. This model overcomes the species-specific limitations of HBV research, providing a powerful tool for studying HBV biology and evaluating HBV treatments in a clinically relevant model system. Supported by ORIP (P51OD011092), NIDA, and NIAID.
Suppression of Viral Rebound by a Rev-Dependent Lentiviral Particle in SIV-Infected Rhesus Macaques
Hetrick et al., Gene Therapy. 2025.
https://pubmed.ncbi.nlm.nih.gov/39025983/
Viral reservoirs are a current major barrier that prevents an effective cure for patients with HIV. Antiretroviral therapy (ART) effectively suppresses viral replication, but ART cessation leads to viral rebound due to the presence of viral reservoirs. Researchers conducted in vivo testing of simian immunodeficiency virus (SIV) Rev-dependent vectors in SIVmac239-infected male and female Indian rhesus macaques, 3–6 years of age, to target viral reservoirs. Treatment with the SIV Rev-dependent vector reduced viral rebound and produced neutralizing antibodies following ART cessation. These results indicate the potential to self-control plasma viremia through a neutralizing antibody-based mechanism elicited by administration of Rev-dependent vectors. This research could guide future studies focused on investigating multiple vector injections and quantifying cell-mediated immune responses. Supported by ORIP (P51OD011104, P40OD028116), NIAID, and NIMH.
Pre-Challenge Gut Microbial Signature Predicts RhCMV/SIV Vaccine Efficacy in Rhesus Macaques
Brochu et al., Microbiology Spectrum. 2025.
https://journals.asm.org/doi/10.1128/spectrum.01285-24
Rhesus cytomegalovirus–based simian immunodeficiency virus (RhCMV/SIV) vaccines provide protection against SIV challenge in approximately 60% of vaccinated rhesus macaques. This study assessed the role that gut microbiota play in SIV vaccine efficacy by analyzing the microbiomes of rhesus macaques before and after immunization using novel compositional data analysis techniques and machine-learning strategies. Researchers identified a gut microbial signature that predicted vaccine protection outcomes and correlated with early biomarker changes in the blood (i.e., host immune response to vaccination). This study indicates that the gut microbiome might play a role in vaccine-induced immunity. Supported by ORIP (P51OD011092).
Immune Restoration by TIGIT Blockade is Insufficient to Control Chronic SIV Infection
Webb et al., Journal of Virology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38775481/
T-cell exhaustion from prolonged upregulation of immune checkpoint receptors (ICR) contributes to immune dysfunction and viral persistence of both human and simian immunodeficiency virus (HIV/SIV) infection. Previous in vitro research has demonstrated the potential use of ICR blockade as a therapeutic. Researchers used a monoclonal antibody targeting humanized T cell immunoreceptor with Ig and ITIM domain (TIGIT) in male and female cynomolgus macaque and female rhesus macaque SIV models, 4–14 years of age. TIGIT blockade was well tolerated, with moderately increased proliferation of T cells and natural killer cells, but a reduction in plasma viral load was not observed. Future research to eliminate SIV should combine ICR blockades with other immunotherapies. Supported by ORIP (P51OD011092), NIAID, and NIMH.
Elevated Inflammation Associated With Markers of Neutrophil Function and Gastrointestinal Disruption in Pilot Study of Plasmodium fragile Co-Infection of ART-Treated SIVmac239+ Rhesus Macaques
Nemphos et al., Viruses. 2024.
https://pubmed.ncbi.nlm.nih.gov/39066199/
Because of geographic overlap, a high potential exists for co-infection with HIV and malaria caused by Plasmodium fragile. Meta-analysis of data collected from 1991 to 2018 demonstrated co-incidence of these two infections to be 43%. Researchers used a male rhesus macaque (RM) model, 6–12 years of age, coinfected with P. fragile and antiretroviral (ART)-treated simian immunodeficiency virus (SIV) to mimic HIV/malaria co-infection observed in patients. ART-treated co-infected RMs demonstrated increased levels of inflammatory cytokines, shifts in neutrophil function, and gastrointestinal mucosal dysfunction. This model may be used to study molecular mechanisms of disease pathology and novel therapies, such as neutrophil-targeted interventions, for patients experiencing co-infection. Supported by ORIP (U42OD010568, U42OD024282, P51OD011104, R21OD031435) and NIGMS.
Transiently Boosting Vγ9+Vδ2+ γδ T Cells Early in Mtb Coinfection of SIV-Infected Juvenile Macaques Does Not Improve Mtb Host Resistance
Larson et al., Infection and Immunity. 2024.
https://pubmed.ncbi.nlm.nih.gov/39475292/
Children with HIV have a higher risk of developing tuberculosis (TB), which is caused by the bacterium Mycobacterium tuberculosis (Mtb). This study utilized juvenile Mauritian cynomolgus macaques to investigate whether enhancing Vγ9+Vδ2+ γδ T cells with zoledronate treatment could improve TB resistance in HIV–TB coinfection. Researchers found that although boosting these immune cells temporarily increased their presence, it did not enhance the macaques’ ability to fight Mtb infection. These findings suggest that solely targeting γδ T cells may not be an effective strategy for improving TB immunity in immunocompromised individuals. These insights are crucial for developing better treatments for HIV–TB coinfections. Supported by ORIP (K01OD033539, P51OD011106) and NIAID.
Transcriptomic and Genetic Profiling in a Spontaneous Non-Human Primate Model of Hypertrophic Cardiomyopathy and Sudden Cardiac Death
Rivas et al., Scientific Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/39733099/
Approximately 1 in 500 individuals are affected by hypertrophic cardiomyopathy (HCM). HCM is characterized by increased left ventricular wall thickness, diastolic dysfunction, and myocardial fibrosis. Outcomes of HCM range from arrhythmias and thromboembolic complications to sudden cardiac death. A current knowledge gap is in understanding the genetic cause of HCM. Researchers compared a nonhuman primate rhesus macaque HCM model to an adult human cohort data set and found that they shared 215 upregulated differentially expressed genes (DEGs); 40 downregulated DEGs; and enriched gene ontology terms, including cardiac muscle cell contraction and heart contraction. The molecular similarity in transcriptomic signatures could be used to develop novel drug therapies to treat HCM in patients. Supported by ORIP (P51OD011107, T32OD011147), NCATS, and NHLBI.
Lipid Nanoparticle-Mediated mRNA Delivery to CD34+ Cells in Rhesus Monkeys
Kim et al., Nature Biotechnology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578569
Blood cells, which are derived from hematopoietic stem cells (HSCs), promote pathologies including anemia, sickle cell disease, immunodeficiency, and metabolic disorders when dysfunctional. Because of the morbidity that results from the bone marrow mobilization and chemotherapy patient conditioning of current HSC therapies, novel treatment strategies that deliver RNA to HSCs are needed. Researchers found a lipid nanoparticle (LNP), LNP67, that delivers messenger RNA (mRNA) to murine HSCs in vivo and human HSCs ex vivo without the use of a cKit-targeting ligand. When tested in 7- to 8-month-old male and female rhesus monkeys, LNP67 successfully delivered mRNA to CD34+ cells and liver cells without adverse effects. These results show the potential translational relevance of an in vivo LNP–mRNA drug. Supported by ORIP (U42OD027094, P51OD011107), NIDDK, and NCATS.
Potent Broadly Neutralizing Antibodies Mediate Efficient Antibody-Dependent Phagocytosis of HIV-Infected Cells
Snow et al., PLOS Pathogens. 2024.
https://pubmed.ncbi.nlm.nih.gov/39466835
This study investigates the role of potent broadly neutralizing antibodies (bNAbs) in mediating antibody-dependent cellular phagocytosis (ADCP) of HIV-infected cells. Researchers developed a novel cell-based approach to assess the ADCP of HIV-infected cells expressing natural conformations of the viral envelope glycoprotein, which allows the virus to infect a host cell. The findings in this study demonstrate that bNAbs facilitate efficient ADCP, highlighting their potential in controlling HIV infection by promoting immune clearance of infected cells. This study provides valuable insights into antibody-mediated immune mechanisms and supports the development of antibody-based therapies and vaccines targeting HIV. Supported by ORIP (P51OD011106) and NIAID.