Selected Grantee Publications
Structural Mapping of Polyclonal IgG Responses to HA After Influenza Virus Vaccination or Infection
León et al., mBio. 2025.
https://pubmed.ncbi.nlm.nih.gov/39912630
Seasonal influenza viruses cause hundreds of thousands of deaths each year and up to a billion infections; under the proper circumstances, influenza A viruses with pandemic potential could threaten the lives of millions more. Many promising universal flu vaccine candidates currently focus on guiding immune responses to highly conserved epitopes on the central stem of the influenza hemagglutinin (HA) viral fusion protein. To support the further development of these stem-targeting vaccine candidates, researchers used negative stain electron microscopy to assess the prevalence of central stem-targeting antibodies in individuals (male and female) who were exposed to influenza antigens through traditional vaccination or natural infection during the 2018–2019 flu season. Results demonstrated humoral IgGs targeting highly conserved regions on both H1 and H3 subtype HAs found in both vaccinated and infected patients. Results from this study support the need for further characterization of protective responses toward conserved epitopes and provide a baseline for examining antibody responses. Supported by ORIP (K01OD036063) and NIAID.
Effect of Omeprazole on Esophageal Microbiota in Dogs Detected Using a Minimally Invasive Sampling Method
Handa et al., Journal of Veterinary Internal Medicine. 2025.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11864821
Omeprazole alters the esophageal microbiome (EM) of humans and has associated effects. The changes and subsequent recovery of the EM in 3- to 6-year-old dogs after omeprazole treatment were assessed using the esophageal string test (EST). All 10 dogs tolerated the EST without adverse effects, and the EST retrieved sufficient biofluid to characterize the EM. Diversity analysis revealed no significant alterations in alpha (Observed species, Shannon and Simpson indices) and beta diversity (Bray‐Curtis) across the time points after omeprazole administration. Thus, omeprazole therapy was not observed to alter the EM of healthy dogs in this study. The application of EST in dogs illustrates its use as a minimally invasive tool for investigating the role of EM in esophageal health and disease in dogs. Supported by ORIP (K01OD030515).
Enhanced RNA-Targeting CRISPR-Cas Technology in Zebrafish
Moreno-Sánchez et al., Nature Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/40091120
CRISPR-Cas13 RNA-targeting systems, widely used in basic and applied sciences, have generated controversy because of collateral activity in mammalian cells and mouse models. In this study, researchers optimized transient formulations as ribonucleoprotein complexes or mRNA-gRNA combinations to enhance the CRISPR-RfxCas13d system in zebrafish. Researchers used chemically modified gRNAs to allow more penetrant loss-of-function phenotypes, improve nuclear RNA targeting, and compare different computational models to determine the most accurate prediction of gRNA activity in vivo. Results demonstrate that transient CRISPR-RfxCas13d can effectively deplete endogenous mRNAs in zebrafish embryos without inducing collateral effects, except when targeting extremely abundant and ectopic RNAs. Their findings contribute to CRISPR-Cas technology optimization for RNA targeting in zebrafish through transient approaches and advance in vivo applications. Supported by ORIP (R21OD034161), NICHD, and NIGMS.
Suppressing APOE4-Induced Neural Pathologies by Targeting the VHL-HIF Axis
Jiang et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39874294
The ε4 variant of human apolipoprotein E (APOE4) is a major genetic risk factor for Alzheimer’s disease and increases mortality and neurodegeneration. Using Caenorhabditis elegans and male APOE-expressing mice, researchers determined that the Von Hippel-Lindau 1 (VHL-1) protein is a key modulator of APOE4-induced neural pathologies. This study demonstrated protective effects of the VHL-1 protein; the loss of this protein reduced APOE4-associated neuronal and behavioral damage by stabilizing hypoxia-inducible factor 1 (HIF-1), a transcription factor that protects against cellular stress and injury. Genetic VHL-1 inhibition also mitigated cerebral vascular injury and synaptic damage in APOE4-expressing mice. These findings suggest that targeting the VHL–HIF axis in nonproliferative tissues could reduce APOE4-driven mortality and neurodegeneration. Supported by ORIP (R24OD010943, R21OD032463, P40OD010440), NHGRI, NIA, and NIGMS.
A Defining Member of the New Cysteine-Cradle Family Is an aECM Protein Signalling Skin Damage in C. elegans
Sonntag et al., PLoS Genetics. 2025.
https://pubmed.ncbi.nlm.nih.gov/40112269
The rigid yet flexible apical extracellular matrix (aECM), known as the cuticle, works with the underlying epidermal layer to create a protective physical barrier against injury or infection in the roundworm Caenorhabditis elegans. The aECM communicates crucial signals to the epidermis based on environmental insults, allowing it to trigger immune activation and combat potential threats. This study investigated the molecular link between aECM and immune response in C. elegans. Investigators found that a secreted protein called SPIA-1 acts as an extracellular signal activator of cuticle damage and mediates immune response. This study sheds light on how epithelial cells detect and respond to damage. Supported by ORIP (R21OD033663, P40OD010440) and NIGMS.
Single-Cell Transcriptomics Predict Novel Potential Regulators of Acute Epithelial Restitution in the Ischemia-Injured Intestine
Rose et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39853303
Following ischemia in the small intestine, early barrier restoration relies on epithelial restitution to reseal the physical barrier and prevent sepsis. Pigs share a similar gastrointestinal anatomy, physiology, and microbiota with humans. Researchers used neonatal and juvenile, 2- to 6-week-old male and female Yorkshire cross pigs to determine upstream regulators of restitution. Single-cell sequencing of ischemia-injured epithelial cells demonstrated two sub-phenotypes of absorptive enterocytes, with one subset presenting a restitution phenotype. Colony-stimulating factor-1 (CSF1) was the only predicted upstream regulator expressed in juvenile jejunum compared with neonatal jejunum. An in vitro scratch wound assay using IPEC-J2 cells showed that BLZ945, a colony-stimulating factor 1 receptor antagonist, inhibited restitution. Ex vivo ischemia-injured neonatal pig jejunum treated with exogenous CSF1 displayed increased barrier function. This study could inform future research focused on developing novel therapeutics for intestinal barrier injury in patients. Supported by ORIP (T32OD011130, K01OD028207), NCATS, NICHD, and NIDDK.
The Widely Used Ucp1-Cre Transgene Elicits Complex Developmental and Metabolic Phenotypes
Halurkar et al., Nature Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/39824816
Bacterial artificial chromosome technology is instrumental to mouse transgenics, including in studies of highly thermogenic brown adipose tissue and energy-storing white adipose tissue. Researchers discovered that male and female Ucp1-CreEvdr transgenic mice, which are commonly used to study fat tissue, may have unintended effects on metabolism and development. Findings revealed that these mice show changes in both brown and white fat function and disruptions in gene activity, suggesting broader physiological impacts than previously thought. This study emphasizes the need for careful validation of genetic tools in research to ensure accurate results, highlighting the potential concerns in using the Ucp1-CreEvdr model in metabolic and developmental studies. Supported by ORIP (R21OD034470, R21OD031907) NCATS, NIDCR, and NIDDK.
Targeting Pancreatic Cancer Cell Stemness by Blocking Fibronectin-Binding Integrins on Cancer-Associated Fibroblasts
Wu et al., Cancer Research Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/39785683
Cancer-associated fibroblasts (CAFs) stimulate the formation and progression of pancreatic adenocarcinoma (PDAC) through the generation of extracellular matrix (ECM). Researchers developed a bispecific antibody (bsAb) that targets α5β1 and αvβ3 integrins expressed on CAFs. Blockade using the bsAb resulted in reduced assembly of fibronectin and collagen fibers in vitro. An antifibrotic effect was observed when CAFs were plated for 72 hours prior to bsAb treatment; pre-deposited ECM was disrupted. Six- to 8-week-old female nu/nu mice treated with bsAb demonstrated fewer tumors and reduced tumor stiffness compared with those exposed to only CAFs co-injected with PDAC cells. These results support a potential novel PDAC therapeutic that targets CAF-mediated fibronectin assembly and ECM production. Supported by ORIP (K01OD030513) and NCI.
Elevated Inflammation Associated With Markers of Neutrophil Function and Gastrointestinal Disruption in Pilot Study of Plasmodium fragile Co-Infection of ART-Treated SIVmac239+ Rhesus Macaques
Nemphos et al., Viruses. 2024.
https://pubmed.ncbi.nlm.nih.gov/39066199/
Because of geographic overlap, a high potential exists for co-infection with HIV and malaria caused by Plasmodium fragile. Meta-analysis of data collected from 1991 to 2018 demonstrated co-incidence of these two infections to be 43%. Researchers used a male rhesus macaque (RM) model, 6–12 years of age, coinfected with P. fragile and antiretroviral (ART)-treated simian immunodeficiency virus (SIV) to mimic HIV/malaria co-infection observed in patients. ART-treated co-infected RMs demonstrated increased levels of inflammatory cytokines, shifts in neutrophil function, and gastrointestinal mucosal dysfunction. This model may be used to study molecular mechanisms of disease pathology and novel therapies, such as neutrophil-targeted interventions, for patients experiencing co-infection. Supported by ORIP (U42OD010568, U42OD024282, P51OD011104, R21OD031435) and NIGMS.
Transiently Boosting Vγ9+Vδ2+ γδ T Cells Early in Mtb Coinfection of SIV-Infected Juvenile Macaques Does Not Improve Mtb Host Resistance
Larson et al., Infection and Immunity. 2024.
https://pubmed.ncbi.nlm.nih.gov/39475292/
Children with HIV have a higher risk of developing tuberculosis (TB), which is caused by the bacterium Mycobacterium tuberculosis (Mtb). This study utilized juvenile Mauritian cynomolgus macaques to investigate whether enhancing Vγ9+Vδ2+ γδ T cells with zoledronate treatment could improve TB resistance in HIV–TB coinfection. Researchers found that although boosting these immune cells temporarily increased their presence, it did not enhance the macaques’ ability to fight Mtb infection. These findings suggest that solely targeting γδ T cells may not be an effective strategy for improving TB immunity in immunocompromised individuals. These insights are crucial for developing better treatments for HIV–TB coinfections. Supported by ORIP (K01OD033539, P51OD011106) and NIAID.