Selected Grantee Publications
- Clear All
- 17 results found
- Stem Cells/Regenerative Medicine
- Genetics
- Imaging
Transcriptomic Analysis of Skeletal Muscle Regeneration Across Mouse Lifespan Identifies Altered Stem Cell States
Walter et al., Nature Aging. 2024.
https://pubmed.ncbi.nlm.nih.gov/39578558
Age-related skeletal muscle regeneration dysfunction is poorly understood. Using single-cell transcriptomics and high-resolution spatial transcriptomics, researchers evaluated factors contributing to age-related decline in skeletal muscle regeneration after injury in young, old, and geriatric male and female mice (5, 20, and 26 months old). Eight immune cell types were identified and associated with age-related dynamics and distinct muscle stem cell states specific to old and geriatric tissue. The findings emphasize the role of extrinsic and intrinsic factors, including cellular senescence, in disrupting muscle repair. This study provides a spatial and molecular framework for understanding regenerative decline and cellular heterogeneity in aging skeletal muscle. Supported by ORIP (F30OD032097), NIA, NIAID, NIAMS, NICHD, and NIDA.
Bone Marrow Transplantation Increases Sulfatase Activity in Somatic Tissues in a Multiple Sulfatase Deficiency Mouse Model
Presa et al., Communications Medicine. 2024.
https://pmc.ncbi.nlm.nih.gov/articles/PMC11502872/pdf/43856_2024_Article_648.pdf
Multiple Sulfatase Deficiency (MSD) is a rare genetic disorder where patients demonstrate loss of function mutations in the SUMF1 gene, resulting in a severe reduction in sulfatase activity. This enzyme deficiency causes impaired lysosomal function and widespread inflammation, leading to clinical manifestations like neurodegeneration, vision and hearing loss, and cardiac disease. The researchers evaluated the therapeutic potential of hematopoietic stem cell transplant (HSCT) to initiate cross-correction, where functional sulfatase enzymes secreted from the healthy donor cells are taken up to restore function in enzyme-deficient host cells. Bone marrow from healthy male and female B6-Sumf1(+/+) mice were transplanted into B6-Sumf1(S153P/S153P) mice, a model for MSD. The results showed that HSCT is suitable to rescue sulfatase activity in peripheral organs, such as the liver, spleen, and heart, but is not beneficial alone in inhibiting the central nervous system pathology of MSD. Supported by ORIP (U54OD020351, U54OD030187, U42OD010921) and NCI.
Enterohemorrhagic Escherichia coli (EHEC) Disrupts Intestinal Barrier Integrity in Translational Canine Stem Cell-Derived Monolayers
Nagao et al., Microbiology Spectrum. 2024.
https://pubmed.ncbi.nlm.nih.gov/39162490/
EHEC produces Shiga toxin, which causes acute colitis with symptoms such as hemolytic uremic syndrome and bloody diarrhea. The researchers developed a colonoid-derived monolayer model to understand EHEC’s impact on canine gut health. Colonoid-derived monolayers co-cultured with EHEC demonstrated key differences compared with the control and nonpathogenic E. coli co-cultures. Scanning electron microscopy displayed EHEC aggregated and attached to the microvilli. EHEC-infected monolayers demonstrated significantly weakened membrane integrity and increased inflammatory cytokine production, specifically TNFα. The researchers developed a novel in vitro model that offers an additional platform for understanding the mechanisms of EHEC pathogenicity, developing therapeutics for EHEC, and studying additional enteric pathogens. Supported by ORIP (K01OD030515, R21OD031903).
Human Stem Cell-Derived Cardiomyocytes Integrate Into the Heart of Monkeys With Right Ventricular Pressure Overload
Scholz et al., Cell Transplantation. 2024.
https://journals.sagepub.com/doi/10.1177/09636897241290367
Patients with single-ventricle congenital heart defects suffer from right ventricular pressure overload (RVPO). Researchers developed a novel pulmonary artery banding (PAB) rhesus macaque model to induce RVPO. This study investigated the efficacy of human induced pluripotent stem cell cardiac lineage cell (hiPSC-CL) delivery at low or high dose into adult male and female rhesus macaques with right ventricular dysfunction. The findings indicate that hiPSC-CLs were successfully grafted and integrated to match the surrounding host right ventricle myocardium. These results suggest hiPSC-CL therapy is a potential adjunctive treatment for RVPO, but future research will be needed to elucidate the beneficial effects. Supported by ORIP (P51OD011106).
The Mutant Mouse Resource and Research Center (MMRRC) Consortium: The U.S.-Based Public Mouse Repository System
Agca et al., Mammalian Genome. 2024.
https://link.springer.com/article/10.1007/s00335-024-10070-3
The MMRRC has been the nation’s preeminent public repository and distribution archive of mutant mouse models for 25 years. The Consortium, with support from NIH, facilitates biomedical research by identifying, acquiring, evaluating, characterizing, preserving, and distributing a variety of mutant mouse strains to investigators around the world. Since its inception, the MMRRC has fulfilled more than 20,000 orders from 13,651 scientists at 8,441 institutions worldwide. Today, the MMRRC maintains an archive of mice, cryopreserved embryos and sperm, embryonic stem-cell lines, and murine monoclonal antibodies for nearly 65,000 alleles. The Consortium also provides scientific consultation, technical assistance, genetic assays, microbiome analysis, analytical phenotyping, pathology, husbandry, breeding and colony management, and more. Supported by ORIP (U42OD010918, U42OD010924, U42OD010983).
Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity
Nam, Cancer Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38588407/
Tumor-initiating cells can survive in harsh environments via stress tolerance and metabolic flexibility; studies on this topic can yield new targets for cancer therapy. Using cultured cells and live human surgical biopsies of non-small cell lung cancer, researchers demonstrated that nutrient stress drives a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. This cascade results from upregulation of integrin αvβ3, a cancer stem cell marker. In mice, pharmacological or genetic targeting prevented lung cancer cells from evading the effects of nutrient stress, thus blocking tumor initiation. This work suggests that this molecular pathway leads to cancer stem cell reprogramming and could be linked to metabolic flexibility and tumor initiation. Supported by ORIP (K01OD030513), NCI, NIGMS, and NINDS.
Stable HIV Decoy Receptor Expression After In Vivo HSC Transduction in Mice and NHPs: Safety and Efficacy in Protection From SHIV
Li, Molecular Therapy. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124088/
Autologous hematopoietic stem cell (HSC) gene therapy offers a promising HIV treatment strategy, but cost, complexity, and toxicity remain significant challenges. Using female mice and female nonhuman primates (NHPs) (i.e., rhesus macaques), researchers developed an approach based on the stable expression of eCD4-Ig, a secreted decoy protein for HIV and simian–human immunodeficiency virus (SHIV) receptors. Their goals were to (1) assess the kinetics and serum level of eCD4-Ig, (2) evaluate the safety of HSC transduction with helper-dependent adenovirus–eCD4-Ig, and (3) test whether eCD4-Ig expression has a protective effect against viral challenge. They found that stable expression of the decoy receptor was achieved at therapeutically relevant levels. These data will guide future in vivo studies. Supported by ORIP (P51OD010425) and NHLBI.
DAZL Knockout Pigs as Recipients for Spermatogonial Stem Cell Transplantation
Lara et al., Cells. 2023.
https://pubmed.ncbi.nlm.nih.gov/37947660/
Spermatogonial stem cell (SSC) transplantation is a technique that holds potential for addressing male infertility, as well as generation of genetically modified animal models. DAZL (Deleted in Azoospermia–Like) is a conserved RNA-binding protein important for germ cell development, and DAZL knockout (KO) causes defects in germ cell commitment and differentiation. Investigators characterized DAZL-KO pigs as SSC transplantation recipients. DAZL-KO pigs support donor-derived spermatogenesis following SSC transplantation, but low spermatogenic efficiency currently limits their use for the production of offspring. Supported by ORIP (R01OD016575) and NIGMS.
Large-Scale Production of Human Blastoids Amenable to Modeling Blastocyst Development and Maternal-Fetal Crosstalk
Yu et al., Cell Stem Cell. 2023.
https://www.sciencedirect.com/science/article/abs/pii/S1934590923002850?via%3Dihub=
Human blastoids provide a valuable model to study early human development and implantation with reduced genetic heterogeneity between samples. Investigators reported a protocol for efficient generation of high-fidelity human blastoids from naïve pluripotent stem cells. The similarities between blastoids and blastocysts in signaling activities—demonstrated using single-cell RNA sequencing—support the use of blastoids to model lineage differentiation and cavity formation. Additionally, endometrial stromal effects in promoting trophoblast cell survival, proliferation, and syncytialization during co-culture with blastoids demonstrated the capability to model maternal–fetal crosstalk. The protocol will facilitate broader use of human blastoids as an ethical model for human blastocysts. Supported by ORIP (S10OD028630) and others.
In-Depth Virological and Immunological Characterization of HIV-1 Cure after CCR5A32/A32 Allogeneic Hematopoietic Stem Cell Transplantation
Jensen et al., Nature Medicine. 2023.
https://pubmed.ncbi.nlm.nih.gov/36807684/
Evidence suggests that CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) can cure HIV-1, but the immunological and virological correlates are unknown. Investigators performed a longitudinal virological and immunological analysis of the peripheral blood and tissue compartments of a 53-year-old male patient more than 9 years after CCR5Δ32/Δ32 allogeneic HSCT and 48 months after analytical treatment interruption. Sporadic traces of HIV-1 DNA were detected in peripheral T cell subsets and tissue-derived samples, but repeated ex vivo quantitative and in vivo outgrowth assays in humanized mice of both sexes did not reveal replication-competent virus. This case provides new insights that could guide future cure strategies. Supported by ORIP (P51OD011092) and NIAID.