Selected Grantee Publications
- Clear All
- 22 results found
- Neurological
- 2021
- 2020
AAV Capsid Variants with Brain-Wide Transgene Expression and Decreased Liver Targeting After Intravenous Delivery in Mouse and Marmoset
Goertsen et al., Nature Neuroscience. 2021.
https://www.nature.com/articles/s41593-021-00969-4
Genetic intervention is increasingly being explored as a therapeutic option for debilitating disorders of the central nervous system (CNS). This project focused on organ-specific targeting of adeno-associated virus (AAV) capsids after intravenous delivery. These results constitute an important step forward toward achieving the goal of engineered AAV vectors that can be used to broadly deliver gene therapies to the CNS in humans. Supported by ORIP (U24OD026638), NIMH, and NINDS.
Precise Visuomotor Transformations Underlying Collective Behavior in Larval Zebrafish
Harpaz et al., Nature Communications. 2021.
https://www.nature.com/articles/s41467-021-26748-0
Sensory signals from neighbors, analyzed in the visuomotor stream of animals, is poorly understood. The authors studied aggregation behavior in larval zebrafish and found that over development larvae transition from over dispersed groups to tight shoals. Young larvae turn away from virtual neighbors by integrating and averaging retina-wide visual occupancy within each eye, and by using a winner-take-all strategy for binocular integration. Observed algorithms accurately predict group structure over development. These findings allow testable predictions regarding the neuronal circuits underlying collective behavior in zebrafish. Supported by ORIP (R43OD024879, R44OD024879) and NINDS.
Monoclonal Antibodies Protect Aged Rhesus Macaques From SARS-CoV-2-Induced Immune Activation and Neuroinflammation
Verma et al., Cell Reports. 2021.
https://www.sciencedirect.com/science/article/pii/S2211124721014157?via%3Dihub%C2%A0=
In aged diabetic female rhesus macaques, prophylactic administration of neutralizing monoclonal antibodies (mAbs) effectively limits SARS-CoV-2 replication in both the upper and lower respiratory tract, and decreases immune activation, including reducing interferon-induced chemokines and limiting effector CD4 T cell influx into the cerebrospinal fluid. These protective mechanisms took place in the areas of the body targeted by the virus and may prevent adverse inflammatory consequences of SARS-CoV-2 infection in high-risk populations. Supported by ORIP (P51OD011107), NIAID, and NIA.
Selective G Protein Signaling Driven by Substance P–Neurokinin Receptor Dynamics
Harris et al., Nature Chemical Biology. 2021.
https://www.nature.com/articles/s41589-021-00890-8
Investigators determined the cryogenic-electron microscopy structures of active neurokinin-1 receptor (NK1R) bound to neuropeptide substance P (SP) or the G protein q (Gq)-biased peptide SP6–11. Peptide interactions deep within NK1R are critical for receptor activation. Conversely, interactions between SP and NK1R extracellular loops are required for potent Gs-signaling but not Gq-signaling. Molecular dynamics simulations showed that these superficial contacts restrict SP flexibility. SP6–11, which lacks these interactions, is dynamic while bound to NK1R. Structural dynamics of NK1R agonists therefore depend on interactions with the receptor extracellular loops and regulate G protein signaling selectivity. This data unveils the molecular mechanism of how two stimuli (SP and Neurokinin A) yield distinct G protein signaling at the same G protein-coupled receptor. Supported by ORIP (S10OD021741, S10OD020054) and others.
A Novel Non-Human Primate Model of Pelizaeus-Merzbacher Disease
Sherman et al., Neurobiology of Disease. 2021.
https://www.sciencedirect.com/science/article/pii/S096999612100214X
Pelizaeus-Merzbacher disease (PMD) in humans is a severe hypomyelinating disorder of the central nervous system (CNS) linked to mutations in the proteolipid protein-1 (PLP1) gene. Investigators report on three spontaneous cases of male neonatal rhesus macaques (RMs) with clinical symptoms of hypomyelinating disease. Genetic analysis revealed that the parents of these related RMs carried a rare, hemizygous missense variant in exon 5 of the PLP1 gene. These RMs represent the first reported NHP model of PMD, providing an opportunity for studies to promote myelination in pediatric hypomyelinating diseases, as other animal models for PMD do not fully mimic the human disorder. Supported by ORIP (R24OD021324, P51OD011092, and S10OD025002) and NINDS.
Neuropeptide S Receptor 1 is a Nonhormonal Treatment Target in Endometriosis
Tapmeier et al., Science Translational Medicine. 2021.
https://pubmed.ncbi.nlm.nih.gov/34433639
Investigators analyzed genetic sequences of humans (n=32 families) and pedigree rhesus macaques (n=849) with spontaneous endometriosis to uncover potential targets for treatment. Target associations indicated a common insertion/deletion variant in NPSR1, the gene encoding neuropeptide S receptor 1. Immunocytochemistry, RT-PCR, and flow cytometry experiments indicated NPSR1 was expressed in the glandular epithelium of eutopic and ectopic endometrium. In a mouse model for endometriosis, an inhibitor of NPSR1-mediated signaling blocked proinflammatory TNFα release, monocyte chemotaxis, and inflammatory cell infiltrate. Further studies in nonhuman primates are needed; however, these results provide support for a nonhormonal treatment of endometriosis. Supported by ORIP (R24OD011173, P51OD011106).
A Noncoding RNA Modulator Potentiates Phenylalanine Metabolism in Mice
Li et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/34353949/
The role of long noncoding RNAs (lncRNAs) in phenylketonuria (PKU), an inherited disorder causing build-up of an amino acid causing brain problems, is unknown. Investigators demonstrated that the mouse lncRNA Pair and human lncRNA HULC associate with phenylalanine hydroxylase (PAH). Pair-knockout mice exhibited phenotypes that faithfully models human PKU, such as excessive blood phenylalanine (Phe), growth retardation, and progressive neurological symptoms. HULC depletion led to reduced PAH enzymatic activities in human induced pluripotent stem cell-differentiated hepatocytes (i.e., that have the capacity to self-renew by dividing). To develop a strategy for restoring liver lncRNAs, these investigators designed lncRNA mimics that exhibit liver enrichment. Treatment with these mimics reduced excessive Phe in Pair -/- and PAH R408W/R408W mice and improved the Phe tolerance of these mice. Supported by ORIP (S10OD012304) and others.
Innate Immunity Stimulation via CpG Oligodeoxynucleotides Ameliorates Alzheimer’s Disease Pathology in Aged Squirrel Monkeys
Patel et al., Brain: A Journal of Neurology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34128045/
Alzheimer's disease is the only illness among the top 10 causes of death for which there is no disease-modifying therapy. The authors have shown in transgenic Alzheimer's disease mouse models that harnessing innate immunity via TLR9 agonist CpG oligodeoxynucleotides (ODNs) modulates age-related defects associated with immune cells and safely reduces amyloid plaques, oligomeric amyloid-β, tau pathology, and cerebral amyloid angiopathy (CAA). They used a nonhuman primate model for sporadic Alzheimer's disease pathology that develops extensive CAA-elderly squirrel monkeys. They demonstrate that long-term use of Class B CpG ODN 2006 induces a favorable degree of innate immunity stimulation. CpG ODN 2006 has been well established in numerous human trials for a variety of diseases. This evidence together with their earlier research validates the beneficial therapeutic outcomes and safety of this innovative immunomodulatory approach. Supported by ORIP (P40OD010938), NINDS, NIA, and NCI.
Combining In Vivo Corneal Confocal Microscopy With Deep Learning-Based Analysis Reveals Sensory Nerve Fiber Loss in Acute Simian Immunodeficiency Virus Infection
McCarron et al., Cornea. 2021.
https://doi.org/10.1097/ICO.0000000000002661
Researchers characterized corneal subbasal nerve plexus features of normal and simian immunodeficiency virus (SIV)-infected pigtail and rhesus macaques using in vivo confocal microscopy and a deep learning approach for automated assessments. Corneal nerve fiber length and fractal dimension measurements did not differ between species, but pigtail macaques had significantly higher baseline corneal nerve fiber tortuosity than rhesus macaques. Acute SIV infection induced decreased corneal nerve fiber length and fractal dimension in the pigtail macaque model for HIV. Adapting deep learning analyses to clinical corneal nerve assessments will improve monitoring of small sensory nerve fiber damage in numerous clinical contexts, including HIV. Supported by ORIP (U42OD013117) and NINDS.
MRI Characteristics of Japanese Macaque Encephalomyelitis (JME): Comparison to Human Diseases
Tagge et al., Journal of Neuroimaging. 2021.
https://onlinelibrary.wiley.com/doi/10.1111/jon.12868
Magnetic resonance imaging data (MRI) were obtained from 114 Japanese macaques, including 30 animals of both sexes that presented with neurological signs of Japanese macaque encephalomyelitis (JME). Quantitative estimates of blood-brain barrier permeability to gadolinium-based-contrast agent (GBCA) were obtained in acute, GBCA-enhancing lesions, and longitudinal imaging data were acquired for 15 JME animals. Intense, focal neuroinflammation was a key MRI finding in JME. Several features of JME compare directly to human inflammatory demyelinating diseases. The development and validation of noninvasive imaging biomarkers in JME provides the potential to improve diagnostic specificity and contribute to the understanding of human demyelinating diseases. Supported by ORIP (P51OD011092, S10OD018224), NINDS, and NIBIB.