Selected Grantee Publications
- Clear All
- 2 results found
- Neurological
- Microscopy
- 2021
Selective G Protein Signaling Driven by Substance P–Neurokinin Receptor Dynamics
Harris et al., Nature Chemical Biology. 2021.
https://www.nature.com/articles/s41589-021-00890-8
Investigators determined the cryogenic-electron microscopy structures of active neurokinin-1 receptor (NK1R) bound to neuropeptide substance P (SP) or the G protein q (Gq)-biased peptide SP6–11. Peptide interactions deep within NK1R are critical for receptor activation. Conversely, interactions between SP and NK1R extracellular loops are required for potent Gs-signaling but not Gq-signaling. Molecular dynamics simulations showed that these superficial contacts restrict SP flexibility. SP6–11, which lacks these interactions, is dynamic while bound to NK1R. Structural dynamics of NK1R agonists therefore depend on interactions with the receptor extracellular loops and regulate G protein signaling selectivity. This data unveils the molecular mechanism of how two stimuli (SP and Neurokinin A) yield distinct G protein signaling at the same G protein-coupled receptor. Supported by ORIP (S10OD021741, S10OD020054) and others.
Combining In Vivo Corneal Confocal Microscopy With Deep Learning-Based Analysis Reveals Sensory Nerve Fiber Loss in Acute Simian Immunodeficiency Virus Infection
McCarron et al., Cornea. 2021.
https://doi.org/10.1097/ICO.0000000000002661
Researchers characterized corneal subbasal nerve plexus features of normal and simian immunodeficiency virus (SIV)-infected pigtail and rhesus macaques using in vivo confocal microscopy and a deep learning approach for automated assessments. Corneal nerve fiber length and fractal dimension measurements did not differ between species, but pigtail macaques had significantly higher baseline corneal nerve fiber tortuosity than rhesus macaques. Acute SIV infection induced decreased corneal nerve fiber length and fractal dimension in the pigtail macaque model for HIV. Adapting deep learning analyses to clinical corneal nerve assessments will improve monitoring of small sensory nerve fiber damage in numerous clinical contexts, including HIV. Supported by ORIP (U42OD013117) and NINDS.