Selected Grantee Publications
- Clear All
- 64 results found
- Cardiovascular
- Stem Cells/Regenerative Medicine
Sex-Specific Cardiac Remodeling in Aged Rats After Adolescent Chronic Stress: Associations with Endocrine and Metabolic Factors
Dearing et al., Biology of Sex Differences. 2024.
https://pubmed.ncbi.nlm.nih.gov/39180122
Cardiovascular disease is a leading cause of death in the world. The potential effects of chronic stress on the development and progression of cardiovascular disease in the aged heart are unknown. In this study, researchers investigated sex- and stress-specific effects on left ventricular hypertrophy (LVH) after aging. Male and female rats were exposed to chronic stress during adolescence and then challenged with a swim test and a glucose tolerance test before and after aging 15 months. As a group, female rats showed increased LVH in response to early life stress. Male rats showed individual differences in vulnerability. These results indicate that sex and stress history can interact to determine susceptibility to cardiovascular risks. Supported by ORIP (F30OD032120, T35OD015130) and NHLBI.
AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys
Liang et al., Human Gene Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38767512/
Genome editing in somatic cells and tissues has the potential to provide long-term expression of therapeutic proteins to treat a variety of genetic lung disorders. However, delivering genome-editing machinery to disease-relevant cell types in the lungs of primates has remained a challenge. Investigators of this article are participating in the NIH Somatic Cell Genome Editing Consortium. Herein, they demonstrate that intratracheal administration of a dual adeno-associated virus type 5 vector encoding CRISPR/Cas9 can mediate genome editing in rhesus (male and female) airways. Up to 8% editing was observed in lung lobes, including a housekeeping gene, GAPDH, and a disease-related gene, angiotensin-converting enzyme 2. Using single-nucleus RNA-sequencing, investigators systematically characterized cell types transduced by the vector. Supported by ORIP (P51OD01110, U42OD027094, S10OD028713), NCATS, NCI, and NHLBI.
Integrin αvβ3 Upregulation in Response to Nutrient Stress Promotes Lung Cancer Cell Metabolic Plasticity
Nam, Cancer Research. 2024.
https://pubmed.ncbi.nlm.nih.gov/38588407/
Tumor-initiating cells can survive in harsh environments via stress tolerance and metabolic flexibility; studies on this topic can yield new targets for cancer therapy. Using cultured cells and live human surgical biopsies of non-small cell lung cancer, researchers demonstrated that nutrient stress drives a metabolic reprogramming cascade that allows tumor cells to thrive despite a nutrient-limiting environment. This cascade results from upregulation of integrin αvβ3, a cancer stem cell marker. In mice, pharmacological or genetic targeting prevented lung cancer cells from evading the effects of nutrient stress, thus blocking tumor initiation. This work suggests that this molecular pathway leads to cancer stem cell reprogramming and could be linked to metabolic flexibility and tumor initiation. Supported by ORIP (K01OD030513), NCI, NIGMS, and NINDS.
Surgical Protocol for Partial Heart Transplantation in Growing Piglets
Medina, World Journal for Pediatric and Congenital Heart Surgery. 2024.
https://pubmed.ncbi.nlm.nih.gov/38780414/
Researchers are interested in using partial heart transplantation (i.e., only the part of the heart containing the necessary heart valve is transplanted) to deliver growing heart valve implants. This novel technique allows partial heart transplants to grow, similar to the valves in heart transplants. More work is needed, however, to understand the underlying biological mechanisms of this approach and achieve progress in clinical care. In the present study, the authors present a surgical protocol for partial heart transplantation in growing piglets. This model will enable other researchers to seek fundamental knowledge about the nature of partial heart transplants. Supported by ORIP (U42OD011140) and NHLBI.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Pigs in Transplantation Research and Their Potential as Sources of Organs in Clinical Xenotransplantation
Raza et al., Comparative Medicine. 2024.
https://pubmed.ncbi.nlm.nih.gov/38359908/
The pig has now gained importance as a potential source of organs for clinical xenotransplantation. When an organ from a wild-type (i.e., genetically unmodified) pig is transplanted into an immunosuppressed nonhuman primate, a vigorous host immune response causes hyperacute rejection (within minutes or hours). This response has been largely overcome by (1) extensive gene editing of the organ-source pig and (2) administration to the recipient of novel immunosuppressive therapy based on blockade of the CD40/CD154 T-cell costimulation pathway. The combination of gene editing and novel immunosuppressive therapy has extended life-supporting pig kidney graft survival to greater than 1 year and of pig heart survival to up to 9 months. This review briefly describes the techniques of gene editing, the potential risks of transfer of porcine endogenous retroviruses with the organ, and the need for breeding and housing of donor pigs under biosecure conditions. Supported by ORIP (P40OD024628) and NIAID.
De Novo Variants in FRYL Are Associated With Developmental Delay, Intellectual Disability, and Dysmorphic Features
Pan et al., The American Journal of Human Genetics. 2024.
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00039-9
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans, and its functions in mammals are largely unknown. Investigators report 13 individuals who have de novo heterozygous variants in FRYL and one individual with a heterozygous FRYL variant that is not confirmed to be de novo. The individuals present with developmental delay; intellectual disability; dysmorphic features; and other congenital anomalies in cardiovascular, skeletal, gastrointestinal, renal, and urogenital systems. Using fruit flies, investigators provide evidence that haploinsufficiency in FRYL likely underlies a disorder in humans with developmental and neurological symptoms. Supported by ORIP (U54OD030165), NHLBI, NICHD, and NCATS.
Injury-Induced Cooperation of InhibinβA and JunB is Essential for Cell Proliferation in Xenopus Tadpole Tail Regeneration
Nakamura et al., Scientific Reports. 2024.
https://pubmed.ncbi.nlm.nih.gov/38355764/
Certain animal species (e.g., amphibians) that can regenerate lost tissues and limbs after injury offer potential for applications in regenerative medicine. Cell proliferation is essential for the reconstruction of injured tissue, but the molecular mechanisms that regulate the transition from wound healing to regenerative cell proliferation remain unclear. Using Xenopus tropicalis, investigators examined the effects of injury on the expression of inhibin subunit beta A (inhba) and junB proto-oncogene (junb). Their findings shed light on the mechanisms underlying injury-induced cell proliferation in regenerative animals. Supported by ORIP (P40OD010997, R24OD030008).
Cytomegalovirus Infection Facilitates the Costimulation of CD57+CD28- CD8 T Cells in HIV Infection and Atherosclerosis via the CD2–LFA-3 Axis
Winchester et al., Journal of Immunology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38047900/
People with HIV are at increased risk of developing atherosclerosis and other cardiovascular diseases, and HIV coinfection with cytomegalovirus (CMV) is associated with immune activation and inflammation. In this study, researchers explored the role of the CD2–LFA-3 axis in driving activation and proliferation of CD57+CD28- CD8 T cells using clinical samples from patients with or without HIV. They propose a model in which CMV infection is linked to enhanced CD2 expression on the T cells, enabling the activation via LFA-3 signals and potentially leading to cardiopathogenic interactions with vascular endothelial cells that express LFA-3. This work provides a potential therapeutic target in atherosclerosis development and progression, especially for people with HIV. Supported by ORIP (P51OD011132, U24OD011023) and NIAID.
Stable HIV Decoy Receptor Expression After In Vivo HSC Transduction in Mice and NHPs: Safety and Efficacy in Protection From SHIV
Li, Molecular Therapy. 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10124088/
Autologous hematopoietic stem cell (HSC) gene therapy offers a promising HIV treatment strategy, but cost, complexity, and toxicity remain significant challenges. Using female mice and female nonhuman primates (NHPs) (i.e., rhesus macaques), researchers developed an approach based on the stable expression of eCD4-Ig, a secreted decoy protein for HIV and simian–human immunodeficiency virus (SHIV) receptors. Their goals were to (1) assess the kinetics and serum level of eCD4-Ig, (2) evaluate the safety of HSC transduction with helper-dependent adenovirus–eCD4-Ig, and (3) test whether eCD4-Ig expression has a protective effect against viral challenge. They found that stable expression of the decoy receptor was achieved at therapeutically relevant levels. These data will guide future in vivo studies. Supported by ORIP (P51OD010425) and NHLBI.