Selected Grantee Publications
- Clear All
- 12 results found
- Cardiovascular
- Neurological
- CRISPR
Extended Survival of 9- and 10-Gene-Edited Pig Heart Xenografts With Ischemia Minimization and CD154 Costimulation Blockade-Based Immunosuppression
Chaban et al., The Journal of Heart and Lung Transplantation. 2024.
https://pubmed.ncbi.nlm.nih.gov/39097214
Heart transplantations are severely constrained from the shortage of available organs derived from human donors. Xenotransplantation of hearts from gene-edited (GE) pigs is a promising way to address this problem. Researchers evaluated GE pig hearts with varying knockouts and human transgene insertions. Human transgenes are introduced to mitigate important physiological incompatibilities between pig cells and human blood. Using a baboon heterotopic cardiac transplantation model, one female and seven male specific-pathogen-free baboons received either a 3-GE, 9-GE, or 10-GE pig heart with an immunosuppression regimen targeting CD40/CD154. Early cardiac xenograft failure with complement activation and multifocal infarcts were observed with 3-GE pig hearts, whereas 9- and 10-GE pig hearts demonstrated successful graft function and prolonged survival. These findings show that one or more transgenes of the 9- and 10-GE pig hearts with CD154 blockade provide graft protection in this preclinical model. Supported by ORIP (U42OD011140) and NIAID.
Impaired Axon Initial Segment Structure and Function in a Model of ARHGEF9 Developmental and Epileptic Encephalopathy
Wang et al., PNAS. 2024.
https://www.pnas.org/doi/10.1073/pnas.2400709121
Researchers developed a mouse model carrying the G55A missense variant identified in ARHGEF9 patients with severe epilepsy and neurodevelopmental phenotypes. Using male Arhgef9G55A mice, this study examined behavioral, molecular, and electrophysiological phenotypes in the Arhgef9G55A model of developmental and epileptic encephalopathies (DEE). Researchers found that the G55A variant causes disruption of inhibitory postsynaptic organization and axon initial segment (AIS) architecture, leading to impairment of both synaptic transmission and action potential generation. The effects of Arhgef9G55A on neuronal function affect both intrinsic and synaptic excitability and preferentially impair AIS. These findings indicate a novel pathological mechanism of DEE and represent a unique example of a neuropathological condition converging from AIS dysfunctions. Supported by ORIP (U54OD020351, U54OD030187, U54OD020351, S10OD026974) and NINDS.
Impaired Skeletal Development by Disruption of Presenilin-1 in Pigs and Generation of Novel Pig Models for Alzheimer's Disease
Uh et al., Journal of Alzheimer's Disease. 2024.
https://pubmed.ncbi.nlm.nih.gov/39177593/
This study explored the effects of presenilin 1 (PSEN1) disruption on vertebral malformations in male and female PSEN1 mutant pigs. Researchers observed significant skeletal impairments and early deaths in pigs with a PSEN1 null mutation, mirroring phenotypes seen in mouse models of Alzheimer’s disease (AD). This porcine model provides valuable insights into pathological hallmarks of PSEN1 mutations in AD, offering a robust platform of therapeutic exploration. The findings establish pigs as an essential translational model for AD, enabling advanced studies on pathophysiology and treatment development for human skeletal and neurological conditions. Supported by ORIP (U42OD011140), NHLBI, NIA, NIAID.
Commentary: The International Mouse Phenotyping Consortium: High-Throughput In Vivo Functional Annotation of the Mammalian Genome
Lloyd, Mammalian Genome. 2024.
https://pubmed.ncbi.nlm.nih.gov/39254744
The International Mouse Phenotyping Consortium (IMPC), a collectively governed consortium of 21 academic research institutions across 15 countries on 5 continents, represents a groundbreaking approach in genetics and biomedical research. Its goal is to create a comprehensive catalog of mammalian gene function that is freely available and equally accessible to the global research community. So far, the IMPC has uncovered the function of thousands of genes about which little was previously known. By 2027, when the current round of funding expires, the IMPC will have produced and phenotyped nearly 12,000 knockout mouse lines representing approximately 60% of the human orthologous genome in mice. This new knowledge has produced numerous insights about the role of genes in health and disease, including informing the genetic basis of rare diseases and positing gene product influences on common diseases. However, as IMPC nears the end of the current funding cycle, its path forward remains unclear. Supported by ORIP (UM1OD023221).
The Mutant Mouse Resource and Research Center (MMRRC) Consortium: The U.S.-Based Public Mouse Repository System
Agca et al., Mammalian Genome. 2024.
https://link.springer.com/article/10.1007/s00335-024-10070-3
The MMRRC has been the nation’s preeminent public repository and distribution archive of mutant mouse models for 25 years. The Consortium, with support from NIH, facilitates biomedical research by identifying, acquiring, evaluating, characterizing, preserving, and distributing a variety of mutant mouse strains to investigators around the world. Since its inception, the MMRRC has fulfilled more than 20,000 orders from 13,651 scientists at 8,441 institutions worldwide. Today, the MMRRC maintains an archive of mice, cryopreserved embryos and sperm, embryonic stem-cell lines, and murine monoclonal antibodies for nearly 65,000 alleles. The Consortium also provides scientific consultation, technical assistance, genetic assays, microbiome analysis, analytical phenotyping, pathology, husbandry, breeding and colony management, and more. Supported by ORIP (U42OD010918, U42OD010924, U42OD010983).
Intrinsic Link Between PGRN and GBA1 D409V Mutation Dosage in Potentiating Gaucher Disease
Lin et al., Human Molecular Genetics. 2024.
https://doi.org/10.1093/hmg/ddae113
Gaucher disease (GD) is an autosomal recessive disorder and one of the most common lysosomal storage diseases. GD is caused by mutations in the GBA1 gene that encodes glucocerebrosidase (GCase), a lysosomal protein involved in glyocolipid metabolism. Progranulin (PGRN, encoded by GRN) is a modifier of GCase, and GRN mutant mice exhibit a GD-like phenotype. The researchers in this study aimed to understand the relationship between GCase and PGRN. They generated a panel of mice with various doses of the GBA1 D409V mutation in the GRN-/- background and characterized the animals’ disease progression using biochemical, pathological, transcriptomic, and neurobehavioral analyses. Homozygous (GRN-/-, GBA1 D409V/D409V) and hemizygous (GRN-/-, GBA1 D409V/null) animals exhibited profound inflammation and neurodegeneration compared to PG96 wild-type mice. Compared to homozygous mice, hemizygous mice showed more profound phenotypes (e.g., earlier onset, increased tissue fibrosis, shorter life span). These findings offer insights into GD pathogenesis and indicate that GD severity is affected by GBA1 D409V dosage and the presence of PGRN. Supported by ORIP (R21OD033660) and NINDS.
AAV5 Delivery of CRISPR/Cas9 Mediates Genome Editing in the Lungs of Young Rhesus Monkeys
Liang et al., Human Gene Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38767512/
Genome editing in somatic cells and tissues has the potential to provide long-term expression of therapeutic proteins to treat a variety of genetic lung disorders. However, delivering genome-editing machinery to disease-relevant cell types in the lungs of primates has remained a challenge. Investigators of this article are participating in the NIH Somatic Cell Genome Editing Consortium. Herein, they demonstrate that intratracheal administration of a dual adeno-associated virus type 5 vector encoding CRISPR/Cas9 can mediate genome editing in rhesus (male and female) airways. Up to 8% editing was observed in lung lobes, including a housekeeping gene, GAPDH, and a disease-related gene, angiotensin-converting enzyme 2. Using single-nucleus RNA-sequencing, investigators systematically characterized cell types transduced by the vector. Supported by ORIP (P51OD01110, U42OD027094, S10OD028713), NCATS, NCI, and NHLBI.
Murine MHC-Deficient Nonobese Diabetic Mice Carrying Human HLA-DQ8 Develop Severe Myocarditis and Myositis in Response to Anti-PD-1 Immune Checkpoint Inhibitor Cancer Therapy
Racine et al., Journal of Immunology. 2024.
Myocarditis has emerged as a relatively rare but often lethal autoimmune complication of checkpoint inhibitor (ICI) cancer therapy, and significant mortality is associated with this phenomenon. Investigators developed a new mouse model system that spontaneously develops myocarditis. These mice are highly susceptible to myocarditis and acute heart failure following anti-PD-1 ICI-induced treatment. Additionally, the treatment accelerates skeletal muscle myositis. The team performed characterization of cardiac and skeletal muscle T cells using histology, flow cytometry, adoptive transfers, and RNA sequencing analyses. This study sheds light on underlying immunological mechanisms in ICI myocarditis and provides the basis for further detailed analyses of diagnostic and therapeutic strategies. Supported by ORIP (U54OD020351, U54OD030187), NCI, NIA, NIDDK, and NIGMS.
Focused Ultrasound–Mediated Brain Genome Editing
Lao et al., PNAS. 2023.
https://www.pnas.org/doi/epdf/10.1073/pnas.2302910120
Gene editing in the brain has been challenging because of the restricted transport imposed by the blood–brain barrier (BBB). In this study, investigators described a safe and effective gene‑editing technique by using focused ultrasound (FUS) to transiently open the BBB for the transport of intravenously delivered CRISPR machinery to the brain in mice. By combining FUS with adeno-associated virus–mediated gene delivery, researchers can achieve more than 25% editing efficiency of particular cell types. This method has the potential to expand toolkit options for CRISPR delivery and opens opportunities for treating diseases of the brain, such as neurodegenerative disorders, with somatic genome editing. Supported by ORIP (U42OD026635) and NINDS.
MIC-Drop: A Platform for Large-scale In Vivo CRISPR Screens
Parvez et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/34413171/
CRISPR screens in animals are challenging because generating, validating, and keeping track of large numbers of mutant animals is prohibitive. These authors introduce Multiplexed Intermixed CRISPR Droplets (MIC-Drop), a platform combining droplet microfluidics, single-needle en masse CRISPR ribonucleoprotein injections, and DNA barcoding to enable large-scale functional genetic screens in zebrafish. In one application, they showed that MIC-Drop could identify small-molecule targets. Furthermore, in a MIC-Drop screen of 188 poorly characterized genes, they discovered several genes important for cardiac development and function. With the potential to scale to thousands of genes, MIC-Drop enables genome-scale reverse genetic screens in model organisms. Supported by ORIP (R24OD017870), NIGMS, and NHLBI.